login

Revision History for A370335

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of Sum_{n>=0} 5^n * (2*4^n + 1)/3 * x^(n*(n+1)/2).
(history; published version)
#5 by Michael De Vlieger at Sat Feb 24 11:04:18 EST 2024
STATUS

reviewed

approved

#4 by Joerg Arndt at Sat Feb 24 03:49:55 EST 2024
STATUS

proposed

reviewed

#3 by Paul D. Hanna at Fri Feb 23 11:43:02 EST 2024
STATUS

editing

proposed

#2 by Paul D. Hanna at Fri Feb 23 11:42:41 EST 2024
NAME

allocated for Paul D. Hanna

Expansion of Sum_{n>=0} 5^n * (2*4^n + 1)/3 * x^(n*(n+1)/2).

DATA

1, 15, 0, 275, 0, 0, 5375, 0, 0, 0, 106875, 0, 0, 0, 0, 2134375, 0, 0, 0, 0, 0, 42671875, 0, 0, 0, 0, 0, 0, 853359375, 0, 0, 0, 0, 0, 0, 0, 17066796875, 0, 0, 0, 0, 0, 0, 0, 0, 341333984375, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6826669921875, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 136533349609375

OFFSET

0,2

COMMENTS

Equals the self-convolution cube of A370336.

EXAMPLE

G.f.: A(x) = 1 + 15*x + 275*x^3 + 5375*x^6 + 106875*x^10 + 2134375*x^15 + 42671875*x^21 + 853359375*x^28 + 17066796875*x^36 + 341333984375*x^45 + ...

RELATED SERIES.

The cube root of the g.f. A(x) is an integer series starting as

A(x)^(1/3) = 1 + 5*x - 25*x^2 + 300*x^3 - 3000*x^4 + 34375*x^5 - 426750*x^6 + 5539375*x^7 - 73968750*x^8 + 1010175000*x^9 + ... + A370336(n)*x^n + ...

PROG

(PARI) {a(n) = my(A);

A = sum(m=0, sqrtint(2*n+1), 5^m*(2*4^m + 1)/3 * x^(m*(m+1)/2) +x*O(x^n));

polcoeff(H=A, n)}

for(n=0, 66, print1(a(n), ", "))

CROSSREFS

Cf. A370015.

KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Feb 23 2024

STATUS

approved

editing

#1 by Paul D. Hanna at Thu Feb 15 17:57:11 EST 2024
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved