login

Revision History for A369496

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)).
(history; published version)
#9 by OEIS Server at Mon Feb 05 19:50:43 EST 2024
LINKS

Alois P. Heinz, <a href="/A369496/b369496_1.txt">Table of n, a(n) for n = 0..200</a>

#8 by Alois P. Heinz at Mon Feb 05 19:50:43 EST 2024
STATUS

editing

approved

Discussion
Mon Feb 05
19:50
OEIS Server: Installed first b-file as b369496.txt.
#7 by Alois P. Heinz at Mon Feb 05 19:50:41 EST 2024
LINKS

Alois P. Heinz, <a href="/A369496/b369496_1.txt">Table of n, a(n) for n = 0..200</a>

STATUS

approved

editing

#6 by N. J. A. Sloane at Thu Jan 25 08:03:50 EST 2024
STATUS

proposed

approved

#5 by Alois P. Heinz at Wed Jan 24 15:18:22 EST 2024
STATUS

editing

proposed

#4 by Alois P. Heinz at Wed Jan 24 15:18:18 EST 2024
MAPLE

b:= proc(n, i) option remember; (m-> `if`(n>m, 0,

`if`(n=m, 1, b(abs(n-i*(i+1)/2), i-1)+b(n, i-1)+

b(n+i*(i+1)/2, i-1))))((2+(3+i)*i)*i/6)

end:

a:= n-> b(n*(n+1)/2, n):

seq(a(n), n=0..32); # Alois P. Heinz, Jan 24 2024

STATUS

proposed

editing

#3 by Ilya Gutkovskiy at Wed Jan 24 15:05:44 EST 2024
STATUS

editing

proposed

#2 by Ilya Gutkovskiy at Wed Jan 24 15:00:07 EST 2024
NAME

allocated for Ilya Gutkovskiy

a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)).

DATA

1, 1, 1, 1, 2, 4, 8, 20, 47, 104, 246, 607, 1496, 3751, 9579, 24720, 64327, 168932, 446830, 1188030, 3177198, 8541152, 23063100, 62550085, 170337684, 465564180, 1276779917, 3512617527, 9692054125, 26815357935, 74381739478, 206820705565, 576371104028

OFFSET

0,5

MATHEMATICA

Table[Coefficient[Product[x^(k (k + 1)/2) + 1 + 1/x^(k (k + 1)/2), {k, 1, n}], x, n (n + 1)/2], {n, 0, 32}]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, Jan 24 2024

STATUS

approved

editing

#1 by Ilya Gutkovskiy at Wed Jan 24 15:00:07 EST 2024
NAME

allocated for Ilya Gutkovskiy

KEYWORD

allocated

STATUS

approved