login

Revision History for A368686

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = Product_{j=0..n, k=0..n} (j + k + n).
(history; published version)
#4 by Vaclav Kotesovec at Wed Jan 03 03:40:35 EST 2024
STATUS

editing

approved

#3 by Vaclav Kotesovec at Wed Jan 03 03:39:10 EST 2024
FORMULA

a(n) = 4*n*Gamma(2*n)^2 * A368685(n) / (4*n*Gamma(2*n)^2).

#2 by Vaclav Kotesovec at Wed Jan 03 03:26:51 EST 2024
NAME

allocated for Vaclav Kotesovec

a(n) = Product_{j=0..n, k=0..n} (j + k + n).

DATA

0, 12, 172800, 1536288768000, 16189465114548633600000, 322110526445545505917029580800000000, 17555281051920416386104936570114748195012608000000000, 3580285185706909590176164870311607533516764550107699116769280000000000000

OFFSET

0,2

FORMULA

For n>0, a(n) = 3*n*BarnesG(n) * BarnesG(3*n) * Gamma(3*n)^2 / BarnesG(2*n+1)^2.

a(n) ~ 3^(9*n^2/2 + 3*n + 5/12) * n^((n+1)^2) / (2^(4*n^2 - 1/6) * exp(3*n^2/2 + 2*n)).

a(n) = Gamma(n)^2 * A368685(n) / (4*n*Gamma(2*n)^2).

MATHEMATICA

Table[Product[i+j+n, {i, 0, n}, {j, 0, n}], {n, 0, 8}]

Join[{0}, Table[3*n*BarnesG[n] * BarnesG[3*n] * Gamma[3*n]^2 / BarnesG[2*n+1]^2, {n, 1, 8}]]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Vaclav Kotesovec, Jan 03 2024

STATUS

approved

editing

#1 by Vaclav Kotesovec at Wed Jan 03 03:17:28 EST 2024
NAME

allocated for Vaclav Kotesovec

KEYWORD

allocated

STATUS

approved