Amiram Eldar, <a href="/A368329/b368329_1.txt">Table of n, a(n) for n = 1..10000</a>
Amiram Eldar, <a href="/A368329/b368329_1.txt">Table of n, a(n) for n = 1..10000</a>
proposed
approved
editing
proposed
Amiram Eldar, <a href="/A368329/b368329_1.txt">Table of n, a(n) for n = 1..10000</a>
allocated for Amiram EldarThe largest term of A054743 that divide n.
1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 16, 81, 1, 1, 1, 1
1,8
First differs from A360540 at n = 27.
The largest divisor d of n such that e > p for all prime powers p^e in the prime factorization of d (i.e., e >= 1 and p^(e+1) does not divide d).
Multiplicative with a(p^e) = 1 if e <= p, and a(p^e) = p^e if e > p.
a(n) >= 1, with equality if and only if n is in A207481.
a(n) <= n, with equality if and only if n is in A054743.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^((p+2)*s-1) - 1/p^((p+2)*(s-1)+1) - 1/p^((p+1)*s) + 1/p^((p+1)*(s-1))).
f[p_, e_] := If[e <= p, 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] <= f[i, 1], 1, f[i, 1]^f[i, 2])); }
allocated
nonn,easy,mult
Amiram Eldar, Dec 21 2023
approved
editing
allocated for Amiram Eldar
allocated
approved