login

Revision History for A366366

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. satisfies A(x) = (1 + x/A(x)^4)/(1 - x).
(history; published version)
#9 by Michael De Vlieger at Sun Oct 08 10:50:17 EDT 2023
STATUS

proposed

approved

#8 by Seiichi Manyama at Sun Oct 08 09:52:35 EDT 2023
STATUS

editing

proposed

#7 by Seiichi Manyama at Sun Oct 08 09:50:32 EDT 2023
CROSSREFS

Cf. A366359.

#6 by Seiichi Manyama at Sun Oct 08 08:26:50 EDT 2023
FORMULA

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(5*k-1,k) * binomial(4*k-1,n-k)/(5*k-1).

#5 by Seiichi Manyama at Sun Oct 08 08:24:06 EDT 2023
#4 by Seiichi Manyama at Sun Oct 08 08:18:14 EDT 2023
DATA

1, 2, -6, 58, -574, 6402, -75878, 939290, -12000318, 157050178, -2094657926, 28368411194, -389079656446, 5393118559938, -75431624084838, 1063251390845338, -15088643098754942, 215396586102923138, -3091050571516120582, 44566089825496186170

#3 by Seiichi Manyama at Sun Oct 08 08:17:37 EDT 2023
PROG

(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(4*k-1, n-k)/(5*k-1));

#2 by Seiichi Manyama at Sun Oct 08 08:12:13 EDT 2023
NAME

allocated for Seiichi Manyama

G.f. satisfies A(x) = (1 + x/A(x)^4)/(1 - x).

DATA

1, 2, -6, 58, -574, 6402, -75878, 939290, -12000318, 157050178, -2094657926, 28368411194, -389079656446, 5393118559938, -75431624084838, 1063251390845338

OFFSET

0,2

KEYWORD

allocated

sign

AUTHOR

Seiichi Manyama, Oct 08 2023

STATUS

approved

editing

#1 by Seiichi Manyama at Sun Oct 08 08:12:13 EDT 2023
NAME

allocated for Seiichi Manyama

KEYWORD

allocated

STATUS

approved