login

Revision History for A366088

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x-x^4) ).
(history; published version)
#9 by Michael De Vlieger at Thu Sep 28 12:07:45 EDT 2023
STATUS

proposed

approved

#8 by Seiichi Manyama at Thu Sep 28 11:57:20 EDT 2023
STATUS

editing

proposed

#7 by Seiichi Manyama at Thu Sep 28 11:45:18 EDT 2023
CROSSREFS

Cf. A366054.

#6 by Seiichi Manyama at Thu Sep 28 11:29:42 EDT 2023
FORMULA

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} (-1)^k * binomial(n+1,k) * binomial(2*n-3*k,n-4*k).

#5 by Seiichi Manyama at Thu Sep 28 11:29:14 EDT 2023
DATA

1, 1, 2, 5, 13, 35, 96, 264, 719, 1913, 4875, 11478, 22860, 26044, -77216, -793820, -4394125, -20304455, -85805571, -343282020, -1321898694, -4943906064, -18052305410, -64551823869, -226418611750, -779487689870, -2633172840764, -8717790419014

#4 by Seiichi Manyama at Thu Sep 28 11:28:29 EDT 2023
PROG

(PARI) a(n) = sum(k=0, n\4, (-1)^k*binomial(n+1, k)*binomial(2*n-3*k, n-4*k))/(n+1);

#3 by Seiichi Manyama at Thu Sep 28 11:22:52 EDT 2023
CROSSREFS
#2 by Seiichi Manyama at Thu Sep 28 11:19:09 EDT 2023
NAME

allocated for Seiichi Manyama

Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1-x-x^4) ).

DATA

1, 1, 2, 5, 13, 35, 96, 264, 719, 1913, 4875, 11478, 22860, 26044, -77216, -793820, -4394125, -20304455, -85805571, -343282020, -1321898694, -4943906064, -18052305410, -64551823869, -226418611750, -779487689870

OFFSET

0,3

KEYWORD

allocated

sign

AUTHOR

Seiichi Manyama, Sep 28 2023

STATUS

approved

editing

#1 by Seiichi Manyama at Thu Sep 28 11:19:09 EDT 2023
NAME

allocated for Seiichi Manyama

KEYWORD

allocated

STATUS

approved