login

Revision History for A364923

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
G.f. satisfies A(x) = 1 + x*A(x)^4 / (1 - 2*x*A(x)^3).
(history; published version)
#14 by Peter Luschny at Sat Apr 13 03:15:31 EDT 2024
STATUS

editing

approved

#13 by Peter Luschny at Sat Apr 13 03:15:26 EDT 2024
CROSSREFS
STATUS

approved

editing

#12 by R. J. Mathar at Wed Aug 16 11:36:21 EDT 2023
STATUS

editing

approved

#11 by R. J. Mathar at Wed Aug 16 11:36:04 EDT 2023
FORMULA

D-finite with recurrence +270*n*(3*n-1)*(3*n+1)*a(n) +(-9463*n^3 -45948*n^2 +88297*n -35478)*a(n-1) +36*(-9017*n^3 +49691*n^2 -90408*n +54354)*a(n-2) +48*(53*n^3 +1724*n^2 -11161*n +16518)*a(n-3) +576*(3*n-10)*(3*n-11) *(n-4)*a(n-4)=0. - R. J. Mathar, Aug 16 2023

MAPLE

A364923 := proc(n)

add( 3^k*(-2)^(n-k)*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1), k=0..n) ;

end proc:

seq(A364923(n), n=0..80); # R. J. Mathar, Aug 16 2023

STATUS

approved

editing

#10 by Michael De Vlieger at Sun Aug 13 08:47:56 EDT 2023
STATUS

reviewed

approved

#9 by Joerg Arndt at Sun Aug 13 08:02:04 EDT 2023
STATUS

proposed

reviewed

#8 by Seiichi Manyama at Sun Aug 13 07:13:52 EDT 2023
STATUS

editing

proposed

#7 by Seiichi Manyama at Sun Aug 13 00:01:13 EDT 2023
CROSSREFS

Cf. A243659.

#6 by Seiichi Manyama at Sat Aug 12 23:51:17 EDT 2023
CROSSREFS
#5 by Seiichi Manyama at Sat Aug 12 23:50:45 EDT 2023
DATA

1, 1, 6, 48, 442, 4419, 46626, 511032, 5761650, 66394596, 778518552, 9258850440, 111417705702, 1354135251538, 16598001854700, 204945037918800, 2546849778687138, 31828936270676172, 399777371427582024, 5043824569861127808, 63892650400004356776