login

Revision History for A362911

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of e.g.f. 1/( 1 - (1 + x) * log(1 + x) ).
(history; published version)
#18 by Vaclav Kotesovec at Sat Nov 11 05:20:27 EST 2023
STATUS

editing

approved

#17 by Vaclav Kotesovec at Sat Nov 11 05:20:14 EST 2023
FORMULA

a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / ((1 + LambertW(1)) * exp(n) * (1/LambertW(1) - 1)^(n+1)). - Vaclav Kotesovec, Nov 11 2023

STATUS

approved

editing

#16 by Michael De Vlieger at Wed May 10 08:23:31 EDT 2023
STATUS

proposed

approved

#15 by Seiichi Manyama at Wed May 10 07:56:50 EDT 2023
STATUS

editing

proposed

#14 by Seiichi Manyama at Wed May 10 07:56:45 EDT 2023
CROSSREFS
STATUS

proposed

editing

#13 by Seiichi Manyama at Wed May 10 07:43:02 EDT 2023
STATUS

editing

proposed

#12 by Seiichi Manyama at Wed May 10 07:24:24 EDT 2023
PROG

(PARI) my(N=20, 30, x='x+O('x^N)); Vec(serlaplace(1/(1-(1+x)*log(1+x))))

#11 by Seiichi Manyama at Wed May 10 07:23:54 EDT 2023
DATA

1, 1, 3, 11, 60, 384, 3062, 27838, 293416, 3447768, 45277392, 651587760, 10254900048, 174557518992, 3203361670896, 62938642659504, 1319693558377728, 29390794198726656, 693223221342879360, 17256288944072200320, 452215395177034040064, 12442278072964931318016

#10 by Seiichi Manyama at Wed May 10 07:22:59 EDT 2023
DATA

1, 1, 3, 11, 60, 384, 3062, 27838, 293416, 3447768, 45277392, 651587760, 10254900048, 174557518992, 3203361670896, 62938642659504, 1319693558377728, 29390794198726656, 693223221342879360, 17256288944072200320, 452215395177034040064, 12442278072964931318016

FORMULA

a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A006153(k).

#9 by Seiichi Manyama at Wed May 10 07:20:16 EDT 2023
FORMULA

a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A006153(k).