editing
approved
editing
approved
<a href="/index/Rec#order_0209">Index entries for linear recurrences with constant coefficients</a>, signature (20, -146, 480, -657, 60, 660, -400, -144, 128).
approved
editing
proposed
approved
editing
proposed
With[{r = 4 + 2 # - 5 #^2 + #^3 &}, Table[8^n + n/2 - n RootSum[r, -494 #^n + 12 #1^(n + 1) + 35 #^(n + 2) &]/458 - RootSum[r, #^n &] - 1, {n, 20}]] // RootReduce
proposed
editing
editing
proposed
1, 30, 323, 3110, 27777, 237498, 1977439, 16202990, 131490509, 1060894002, 8529819531, 68439823942, 548461371993, 4392080943978, 35156984457463, 281349668446430, 2251228221924645, 18011798305060578, 144103388698943651, 1152868080218482102, 9223130638279472433
3,1
1,2
Sequence extended to n=1 using formula/recurrence.
<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20, -146, 480, -657, 60, 660, -400, -144, 128).
a(n) = 20*a(n-1)-146*a(n-2)+480*a(n-3)-657*a(n-4)+60*a(n-5)+660*a(n-6)-400*a(n-7)-144*a(n-8)+128*a(n-9).
G.f.: x*(-1 - 10*x + 131*x^2 - 550*x^3 + 1008*x^4 - 628*x^5 + 128*x^6 - 448*x^7 + 384*x^8)/((-1 + 8*x)*(-1 + 6*x - 7*x^2 - 2*x^3 + 4*x^4)^2).
LinearRecurrence[{20, -146, 480, -657, 60, 660, -400, -144, 128}, {1, 30, 323, 3110, 27777, 237498, 1977439, 16202990, 131490509}, 20]
CoefficientList[Series[(-1 - 10 x + 131 x^2 - 550 x^3 + 1008 x^4 - 628 x^5 + 128 x^6 - 448 x^7 + 384 x^8)/((-1 + 8 x) (-1 + 6 x - 7 x^2 - 2 x^3 + 4 x^4)^2), {x, 0, 20}], x]
With[{r = 4 + 2 # - 5 #^2 + #^3 &}, Table[8^n + n/2 - n RootSum[r, -494 #^n + 12 #1^(n + 1) + 35 #^(n + 2) &]/458 - RootSum[r, #^n &] - 1, {n, 20}]] // RootReduce
approved
editing
proposed
approved
editing
proposed
323, 3110, 27777, 237498, 1977439, 16202990, 131490509, 1060894002, 8529819531, 68439823942, 548461371993, 4392080943978, 35156984457463, 281349668446430, 2251228221924645, 18011798305060578, 144103388698943651, 1152868080218482102, 9223130638279472433
a(n) = 2^(3*n) - 1 - A286187(n). - Pontus von Brömssen, Apr 23 2023
Cf. A286187.
nonn,more,new
More terms (based on data in A286187) from Pontus von Brömssen, Apr 23 2023
approved
editing