login

Revision History for A362521

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of vertex cuts in the n-web graph.
(history; published version)
#14 by Ray Chandler at Wed Apr 26 12:47:59 EDT 2023
STATUS

editing

approved

#13 by Ray Chandler at Wed Apr 26 12:47:54 EDT 2023
LINKS

<a href="/index/Rec#order_0209">Index entries for linear recurrences with constant coefficients</a>, signature (20, -146, 480, -657, 60, 660, -400, -144, 128).

STATUS

approved

editing

#12 by Michael De Vlieger at Mon Apr 24 15:20:13 EDT 2023
STATUS

proposed

approved

#11 by Eric W. Weisstein at Mon Apr 24 12:36:24 EDT 2023
STATUS

editing

proposed

#10 by Eric W. Weisstein at Mon Apr 24 12:36:21 EDT 2023
MATHEMATICA

With[{r = 4 + 2 # - 5 #^2 + #^3 &}, Table[8^n + n/2 - n RootSum[r, -494 #^n + 12 #1^(n + 1) + 35 #^(n + 2) &]/458 - RootSum[r, #^n &] - 1, {n, 20}]] // RootReduce

STATUS

proposed

editing

#9 by Eric W. Weisstein at Mon Apr 24 12:33:42 EDT 2023
STATUS

editing

proposed

#8 by Eric W. Weisstein at Mon Apr 24 12:33:40 EDT 2023
DATA

1, 30, 323, 3110, 27777, 237498, 1977439, 16202990, 131490509, 1060894002, 8529819531, 68439823942, 548461371993, 4392080943978, 35156984457463, 281349668446430, 2251228221924645, 18011798305060578, 144103388698943651, 1152868080218482102, 9223130638279472433

OFFSET

3,1

1,2

COMMENTS

Sequence extended to n=1 using formula/recurrence.

LINKS

<a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20, -146, 480, -657, 60, 660, -400, -144, 128).

FORMULA

a(n) = 20*a(n-1)-146*a(n-2)+480*a(n-3)-657*a(n-4)+60*a(n-5)+660*a(n-6)-400*a(n-7)-144*a(n-8)+128*a(n-9).

G.f.: x*(-1 - 10*x + 131*x^2 - 550*x^3 + 1008*x^4 - 628*x^5 + 128*x^6 - 448*x^7 + 384*x^8)/((-1 + 8*x)*(-1 + 6*x - 7*x^2 - 2*x^3 + 4*x^4)^2).

MATHEMATICA

LinearRecurrence[{20, -146, 480, -657, 60, 660, -400, -144, 128}, {1, 30, 323, 3110, 27777, 237498, 1977439, 16202990, 131490509}, 20]

CoefficientList[Series[(-1 - 10 x + 131 x^2 - 550 x^3 + 1008 x^4 - 628 x^5 + 128 x^6 - 448 x^7 + 384 x^8)/((-1 + 8 x) (-1 + 6 x - 7 x^2 - 2 x^3 + 4 x^4)^2), {x, 0, 20}], x]

With[{r = 4 + 2 # - 5 #^2 + #^3 &}, Table[8^n + n/2 - n RootSum[r, -494 #^n + 12 #1^(n + 1) + 35 #^(n + 2) &]/458 - RootSum[r, #^n &] - 1, {n, 20}]] // RootReduce

STATUS

approved

editing

#7 by N. J. A. Sloane at Sun Apr 23 22:35:23 EDT 2023
STATUS

proposed

approved

#6 by Pontus von Brömssen at Sun Apr 23 13:31:59 EDT 2023
STATUS

editing

proposed

#5 by Pontus von Brömssen at Sun Apr 23 13:30:45 EDT 2023
DATA

323, 3110, 27777, 237498, 1977439, 16202990, 131490509, 1060894002, 8529819531, 68439823942, 548461371993, 4392080943978, 35156984457463, 281349668446430, 2251228221924645, 18011798305060578, 144103388698943651, 1152868080218482102, 9223130638279472433

FORMULA

a(n) = 2^(3*n) - 1 - A286187(n). - Pontus von Brömssen, Apr 23 2023

CROSSREFS

Cf. A286187.

KEYWORD

nonn,more,new

EXTENSIONS

More terms (based on data in A286187) from Pontus von Brömssen, Apr 23 2023

STATUS

approved

editing