login

Revision History for A358521

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Sorted list of positions of first appearances in the sequence of Matula-Goebel numbers of standard ordered trees (A358506).
(history; published version)
#7 by Michael De Vlieger at Sun Nov 20 18:30:21 EST 2022
STATUS

proposed

approved

#6 by Gus Wiseman at Sun Nov 20 18:12:49 EST 2022
STATUS

editing

proposed

#5 by Gus Wiseman at Sun Nov 20 18:12:25 EST 2022
EXAMPLE

22: ((o)(o)o)

24: ((o)ooo)

32: (ooooo)

33: (((o)o))

34: ((((o)))o)

35: ((oo)(o))

#4 by Gus Wiseman at Sun Nov 20 18:11:46 EST 2022
MATHEMATICA

stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;

#3 by Gus Wiseman at Sun Nov 20 17:53:09 EST 2022
NAME

allocated for Gus WisemanSorted list of positions of first appearances in the sequence of Matula-Goebel numbers of standard ordered trees (A358506).

DATA

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 22, 24, 32, 33, 34, 35, 36, 37, 38, 40, 43, 44, 48, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 80, 86, 88, 96, 128, 129, 131, 132, 133, 134, 136, 137, 138, 139, 140, 144, 147, 148, 150, 152, 160, 171, 172

OFFSET

1,2

COMMENTS

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

LINKS

Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a>

EXAMPLE

The terms together with their standard ordered trees begin:

1: o

2: (o)

3: ((o))

4: (oo)

5: (((o)))

6: ((o)o)

8: (ooo)

9: ((oo))

10: (((o))o)

11: ((o)(o))

12: ((o)oo)

16: (oooo)

17: ((((o))))

18: ((oo)o)

19: (((o))(o))

20: (((o))oo)

22: ((o)(o)o)

24: ((o)ooo)

32: (ooooo)

33: (((o)o))

34: ((((o)))o)

35: ((oo)(o))

MATHEMATICA

stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;

srt[n_]:=If[n==1, {}, srt/@stc[n-1]];

mgnum[t_]:=If[t=={}, 1, Times@@Prime/@mgnum/@t];

fir[q_]:=Select[Range[Length[q]], !MemberQ[Take[q, #-1], q[[#]]]&];

fir[Table[mgnum[srt[n]], {n, 100}]]

CROSSREFS

Positions of first appearances in A358506.

The unsorted version is A358522.

A000108 counts ordered rooted trees, unordered A000081.

A214577 and A358377 rank trees with no permutations.

Cf. A001263, A014486, A061775, `A127301, A196050, A206487, A358371, A358372, ~`A358373, A358378, `A358379, ~`A358459, `A358505, ~`A358507, `~A358508, ~`A358523.

KEYWORD

allocated

nonn

AUTHOR

Gus Wiseman, Nov 20 2022

STATUS

approved

editing

#2 by Gus Wiseman at Sun Nov 20 11:31:36 EST 2022
KEYWORD

allocating

allocated

#1 by Gus Wiseman at Sun Nov 20 11:31:36 EST 2022
NAME

allocated for Gus Wiseman

KEYWORD

allocating

STATUS

approved