login

Revision History for A355117

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(1) = 1; a(n+1) = Sum_{d|n} 4^(n/d - 1) * a(d).
(history; published version)
#5 by Michael De Vlieger at Fri Jun 24 08:30:39 EDT 2022
STATUS

reviewed

approved

#4 by Joerg Arndt at Fri Jun 24 05:00:47 EDT 2022
STATUS

proposed

reviewed

#3 by Ilya Gutkovskiy at Sun Jun 19 13:30:39 EDT 2022
STATUS

editing

proposed

#2 by Ilya Gutkovskiy at Sun Jun 19 13:21:02 EDT 2022
NAME

allocated for Ilya Gutkovskiy

a(1) = 1; a(n+1) = Sum_{d|n} 4^(n/d - 1) * a(d).

DATA

1, 1, 5, 21, 89, 345, 1405, 5501, 22033, 87649, 350405, 1398981, 5596345, 22373561, 89492141, 357930301, 1431711857, 5726679153, 22906712645, 91626189381, 366504720137, 1466016390873, 5864065352173, 23456251396589, 93825005578001, 375299982311441, 1501199928316661

OFFSET

1,3

FORMULA

G.f.: x * ( 1 + Sum_{n>=1} a(n) * x^n / (1 - 4 * x^n) ).

a(n) ~ 4^(n-1) / 3.

MATHEMATICA

a[1] = 1; a[n_] := a[n] = Sum[4^((n - 1)/d - 1) a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 27}]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, Jun 19 2022

STATUS

approved

editing

#1 by Ilya Gutkovskiy at Sun Jun 19 13:21:02 EDT 2022
NAME

allocated for Ilya Gutkovskiy

KEYWORD

allocated

STATUS

approved