login

Revision History for A352706

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. A(x) satisfies: (1 - x*A(x))^7 = 1 - 7*x - x^7*A(x^7).
(history; published version)
#9 by Michael De Vlieger at Thu Sep 01 12:04:34 EDT 2022
STATUS

proposed

approved

#8 by Michel Marcus at Thu Sep 01 11:27:30 EDT 2022
STATUS

editing

proposed

#7 by Michel Marcus at Thu Sep 01 11:27:26 EDT 2022
NAME

G.f. A(x) satifiessatisfies: (1 - x*A(x))^7 = 1 - 7*x - x^7*A(x^7).

STATUS

approved

editing

#6 by Paul D. Hanna at Mon Apr 04 20:01:39 EDT 2022
STATUS

editing

approved

#5 by Paul D. Hanna at Mon Apr 04 20:01:35 EDT 2022
LINKS

Paul D. Hanna, <a href="/A352706/b352706.txt">Table of n, a(n) for n = 0..1000</a>

STATUS

approved

editing

#4 by Bruno Berselli at Thu Mar 31 09:37:15 EDT 2022
STATUS

proposed

approved

#3 by Paul D. Hanna at Tue Mar 29 19:30:56 EDT 2022
STATUS

editing

proposed

#2 by Paul D. Hanna at Tue Mar 29 19:30:52 EDT 2022
NAME

allocated for Paul D. Hanna

G.f. A(x) satifies: (1 - x*A(x))^7 = 1 - 7*x - x^7*A(x^7).

DATA

1, 3, 13, 65, 351, 1989, 11650, 69900, 427167, 2648438, 16612947, 105215448, 671760933, 4318468134, 27926126553, 181520036178, 1185220461867, 7769787812787, 51117085998498, 337373170647840, 2233091755252871, 14819626692452231, 98582852467595847

OFFSET

0,2

COMMENTS

Essentially an unsigned version of A352705 (after dropping the initial term).

FORMULA

G.f. A(x) satisfies:

(1) (1 + x*A(-x))^7 = 1 + 7*x + x^7*A(-x^7).

(2) A(x) = (1 - (1 - 7*x - x^7*A(x^7))^(1/7))/x.

(3) A(x)^7 = A(x^7) (mod 7).

EXAMPLE

G.f.: A(x) = 1 + 3*x + 13*x^2 + 65*x^3 + 351*x^4 + 1989*x^5 + 11650*x^6 + 69900*x^7 + 427167*x^8 + 2648438*x^9 + 16612947*x^10 + ...

where

(1 - x*A(x))^7 = 1 - 7*x - x^7 - 3*x^14 - 13*x^21 - 65*x^28 - 351*x^35 - 1989*x^42 - 11650*x^49 - 69900*x^56 - 427167*x^63 - 2648438*x^70 + ...

also

(1 - 7*x - x^7*A(x^7))^(1/7) = 1 - x - 3*x^2 - 13*x^3 - 65*x^4 - 351*x^5 - 1989*x^6 - 11650*x^7 - 69900*x^8 - 427167*x^9 - 2648438*x^10 + ...

which equals 1 - x*A(x).

PROG

(PARI) {a(n) = my(A=1+3*x); for(i=1, n,

A = (1 - (1 - 7*x - x^7*subst(A, x, x^7) + x*O(x^(n+1)))^(1/7))/x);

polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Mar 29 2022

STATUS

approved

editing

#1 by Paul D. Hanna at Tue Mar 29 19:13:27 EDT 2022
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved