reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
1, 1, 4, 1, 8, 28, 1, 12, 64, 212, 1, 16, 116, 520, 1676, 1, 20, 184, 1052, 4288, 13604, 1, 24, 268, 1872, 9316, 35784, 112380, 1, 28, 368, 3044, 17976, 81708, 301440, 940020, 1, 32, 484, 4632, 31740, 167376, 713940, 2558280, 7936620, 1, 36, 616, 6700, 52336, 314932, 1531000, 6231100, 21842560, 67494980
T[n_, k_] := Module[{u, v}, SeriesCoefficient[(1 - u v)/(1 - u - v - 3 u v), {u, 0, n}] // SeriesCoefficient[#, {v, 0, k}]&];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)
approved
editing
proposed
approved
editing
proposed
The array is symmetric; the non-redudant redundant triangular part starts
1
approved
editing
editing
approved
The array is symmetric; the non-redudant triangular part starts
1
1 4
1 8 28
1 12 64 212
1 16 116 520 1676
1 20 184 1052 4288 13604
1 24 268 1872 9316 35784 112380
1 28 368 3044 17976 81708 301440 940020
1 32 484 4632 31740 167376 713940 2558280 7936620
1, 1, 4, 1, 8, 28, 1, 12, 64, 212, 1, 16, 116, 520, 1676, 1, 20, 184, 1052, 4288, 13604, 1, 24, 268, 1872, 9316, 35784, 112380, 1, 28, 368, 3044, 17976, 81708, 301440, 940020, 1, 32, 484, 4632, 31740, 167376, 713940, 2558280, 7936620, 1, 36, 616, 6700, 52336, 314932, 1531000, 6231100, 21842560, 67494980, 1, 40, 764, 9312, 81748, 553688, 3029484, 13853584, 54389444, 187412104, 577309148
R. J. Mathar, <a href="/A348595/a348595.pdf">Walks of up and right steps in the square lattice with blocked squares</a>