login

Revision History for A341868

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of partitions of n into 4 distinct and relatively prime parts.
(history; published version)
#29 by Susanna Cuyler at Tue Feb 23 18:02:40 EST 2021
STATUS

proposed

approved

#28 by Ilya Gutkovskiy at Tue Feb 23 13:42:45 EST 2021
STATUS

editing

proposed

#27 by Ilya Gutkovskiy at Tue Feb 23 13:01:35 EST 2021
#26 by Ilya Gutkovskiy at Tue Feb 23 12:32:16 EST 2021
NAME

allocated for Ilya GutkovskiyNumber of partitions of n into 4 distinct and relatively prime parts.

DATA

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 22, 27, 33, 39, 45, 54, 61, 72, 79, 94, 101, 120, 127, 149, 158, 185, 189, 225, 231, 267, 274, 321, 319, 378, 377, 435, 439, 511, 495, 588, 577, 661, 656, 764, 729, 863, 836, 954, 939, 1089, 1022, 1215, 1165, 1323, 1289, 1492, 1392, 1650, 1566, 1776, 1715

OFFSET

10,3

FORMULA

G.f.: Sum_{k>=1} mu(k)* x^(10*k) / Product_{j=1..4} (1 - x^(j*k)).

MATHEMATICA

nmax = 70; CoefficientList[Series[Sum[MoebiusMu[k] x^(10 k)/Product[1 - x^(j k), {j, 1, 4}], {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 10] &

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, Feb 23 2021

STATUS

approved

editing

#25 by Ilya Gutkovskiy at Tue Feb 23 12:32:16 EST 2021
NAME

allocated for Ilya Gutkovskiy

KEYWORD

recycled

allocated

#24 by N. J. A. Sloane at Tue Feb 23 12:30:26 EST 2021
STATUS

editing

approved

#23 by N. J. A. Sloane at Tue Feb 23 12:30:24 EST 2021
NAME

Numbers m such that m*(3m+2) is a square.

DATA

2, 32, 450, 6272, 87362, 1216800, 16947842, 46302366, 177343944, 206698468, 236052992, 265407516, 279030998, 294762040, 308385522, 324116564, 337740046, 353471088, 367094570, 380718052, 396449094, 425803618, 439427100, 455158142, 470889184, 484512666, 498136148, 511759630, 513867190

OFFSET

1,1

COMMENTS

This uses the solution for a k-agon based pyramid, with k=8, for an octagonal base pyramid. From the general formula: Sum = (k/2 - 1)*n^2 + (-k/2 + 2)*n.

FORMULA

a(n) = 2*A098301(n).

EXAMPLE

a(1) = 2 is in the series as 2*(3*2 + 2) = 16 which is square.

a(2) = 32 is in the series as 2*(3*32 + 2) = 196 which is square.

PROG

(MMBasic)

Function sum(x)

k=8 'an octagonal based pyramid

sum = ((0.5*k-1)*x^2)-((-0.5*k+2)*x)

End Function

Function is_square$(i)

If Sqr(i) = Int(Sqr(i)) Then

is_square$="true"

Else

is_square$="false"

End If

End Function

Sub square()

For x = 1 To 10000000

If is_square$(sum(x)) = "true" Then

Print x

Print #1, x

End If

Next x

End Sub

square()

(Python 3)

import math

def sumx(x):

k=8

return ((0.5*k-1)*x**2)-((-0.5*k+2)*x)

def is_square(i):

if math.sqrt(i) == int(math.sqrt(i)):

is_square="true"

else:

is_square="false"

return is_square

for t in range(1000000000):

if is_square(sumx(t)) == "true":

print(t)

CROSSREFS

Cf. A000290, A098301, A055997(k=3), A220186(k=5), A084703(k=6), A224419(k=7).

KEYWORD

nonn,changed

recycled

AUTHOR

Glen Gilchrist, Feb 23 2021

STATUS

proposed

editing

#22 by Michel Marcus at Tue Feb 23 11:47:39 EST 2021
STATUS

editing

proposed

Discussion
Tue Feb 23
12:30
N. J. A. Sloane: Agreed, will recycle
#21 by Michel Marcus at Tue Feb 23 11:47:29 EST 2021
CROSSREFS

Cf. A000290, A098301, A055997(k=3), A220186(k=5), A084703(k=6), A224419(k=7).

#20 by Michel Marcus at Tue Feb 23 11:46:28 EST 2021
NAME

Numbers n m such that nm*(3n3m+2) is a square.

OFFSET

0,1,1