proposed
approved
proposed
approved
editing
proposed
allocated for Ilya GutkovskiyNumber of partitions of n into 4 distinct and relatively prime parts.
1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 22, 27, 33, 39, 45, 54, 61, 72, 79, 94, 101, 120, 127, 149, 158, 185, 189, 225, 231, 267, 274, 321, 319, 378, 377, 435, 439, 511, 495, 588, 577, 661, 656, 764, 729, 863, 836, 954, 939, 1089, 1022, 1215, 1165, 1323, 1289, 1492, 1392, 1650, 1566, 1776, 1715
10,3
G.f.: Sum_{k>=1} mu(k)* x^(10*k) / Product_{j=1..4} (1 - x^(j*k)).
nmax = 70; CoefficientList[Series[Sum[MoebiusMu[k] x^(10 k)/Product[1 - x^(j k), {j, 1, 4}], {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 10] &
allocated
nonn
Ilya Gutkovskiy, Feb 23 2021
approved
editing
allocated for Ilya Gutkovskiy
recycled
allocated
editing
approved
Numbers m such that m*(3m+2) is a square.
2, 32, 450, 6272, 87362, 1216800, 16947842, 46302366, 177343944, 206698468, 236052992, 265407516, 279030998, 294762040, 308385522, 324116564, 337740046, 353471088, 367094570, 380718052, 396449094, 425803618, 439427100, 455158142, 470889184, 484512666, 498136148, 511759630, 513867190
1,1
This uses the solution for a k-agon based pyramid, with k=8, for an octagonal base pyramid. From the general formula: Sum = (k/2 - 1)*n^2 + (-k/2 + 2)*n.
a(n) = 2*A098301(n).
a(1) = 2 is in the series as 2*(3*2 + 2) = 16 which is square.
a(2) = 32 is in the series as 2*(3*32 + 2) = 196 which is square.
(MMBasic)
Function sum(x)
k=8 'an octagonal based pyramid
sum = ((0.5*k-1)*x^2)-((-0.5*k+2)*x)
End Function
Function is_square$(i)
If Sqr(i) = Int(Sqr(i)) Then
is_square$="true"
Else
is_square$="false"
End If
End Function
Sub square()
For x = 1 To 10000000
If is_square$(sum(x)) = "true" Then
Print x
Print #1, x
End If
Next x
End Sub
square()
(Python 3)
import math
def sumx(x):
k=8
return ((0.5*k-1)*x**2)-((-0.5*k+2)*x)
def is_square(i):
if math.sqrt(i) == int(math.sqrt(i)):
is_square="true"
else:
is_square="false"
return is_square
for t in range(1000000000):
if is_square(sumx(t)) == "true":
print(t)
nonn,changed
recycled
Glen Gilchrist, Feb 23 2021
proposed
editing
editing
proposed
Numbers n m such that nm*(3n3m+2) is a square.
0,1,1