login

Revision History for A332153

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = 5*(10^(2*n+1)-1)/9 - 2*10^n.
(history; published version)
#6 by M. F. Hasler at Tue Feb 11 08:15:16 EST 2020
STATUS

editing

approved

#5 by M. F. Hasler at Tue Feb 11 08:15:13 EST 2020
MATHEMATICA

Array[5 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]

STATUS

approved

editing

#4 by M. F. Hasler at Sun Feb 09 10:52:50 EST 2020
STATUS

proposed

approved

#3 by M. F. Hasler at Sun Feb 09 10:51:56 EST 2020
STATUS

editing

proposed

#2 by M. F. Hasler at Sun Feb 09 10:44:54 EST 2020
NAME

allocated for M. F. Hasler

a(n) = 5*(10^(2*n+1)-1)/9 - 2*10^n.

DATA

3, 535, 55355, 5553555, 555535555, 55555355555, 5555553555555, 555555535555555, 55555555355555555, 5555555553555555555, 555555555535555555555, 55555555555355555555555, 5555555555553555555555555, 555555555555535555555555555, 55555555555555355555555555555, 5555555555555553555555555555555

OFFSET

0,1

LINKS

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000).

FORMULA

a(n) = 5*A138148(n) + 3*10^n = A002279(2n+1) - 2*10^n.

G.f.: (3 + 202*x - 700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).

a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

MAPLE

A332153 := n -> 5*(10^(2*n+1)-1)/9-2*10^n;

MATHEMATICA

Array[5 (10^(2 # + 1)-1)/9 - 2*10^# &, 15]

PROG

(PARI) apply( {A332153(n)=10^(n*2+1)\9*5-2*10^n}, [0..15])

(Python) def A332153(n): return 10**(n*2+1)//9*5-2*10**n

CROSSREFS

Cf. A002275 (repunits R_n = (10^n-1)/9), A002279 (5*R_n), A011557 (10^n).

Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).

Cf. A332113 .. A332193 (variants with different repeated digit 1, ..., 9).

Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).

KEYWORD

allocated

nonn,base,easy

AUTHOR

M. F. Hasler, Feb 09 2020

STATUS

approved

editing

#1 by M. F. Hasler at Thu Feb 06 20:54:39 EST 2020
NAME

allocated for M. F. Hasler

KEYWORD

allocated

STATUS

approved