proposed
approved
proposed
approved
editing
proposed
From Peter Luschny, May 19 2021: (Start)
Next three formulas for n >= 1:
a(n) = A026300(2*n - 1, n - 1).
a(n) = Sum_{j=0..floor((n-1)/2)} C(2*n-1, 2*j + n)*(C(2*j + n, j) - C(2*j +n, j-1)).
a(n) = binomial(2*n - 1, n - 1)*hypergeom([(2 - n)/2, (1 - n)/2], [n + 2], 4) for n >= 1. - _Peter Luschny_, May 19 2021(End)
a(n) = binomial(2*n - 1, n - 1)*hypergeom([(2 - n)/2, (1 - n)/2], [n + 2], 4) for n >= 1. - Peter Luschny, May 19 2021
a[n_] := Binomial[2n - 1, n - 1] Hypergeometric2F1[(2 - n)/2, (1 - n)/2, n + 2, 4];
a[0] := 1; Table[a[n], {n, 0, 24}] (* Peter Luschny, May 19 2021 *)
approved
editing
proposed
approved
editing
proposed
b[x_, y_, t_] := b[x, y, t] = If[Min[x, y] < 0, 0, If[Max[x, y]==0, 1, b[x - 1, y, 1] + If[t==1, b[x - 1, y + 1, 0] + b[x + 1, y - 1, 0], 0]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 25] (* Jean-François Alcover, May 13 2020, after Maple *)
approved
editing
editing
approved
a(n) ~ sqrt(5 + 1/sqrt(13)) * (70 + 26*sqrt(13))^n / (2^(3/2) * sqrt(Pi*n) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Oct 12 2019
approved
editing
proposed
approved