editing
approved
editing
approved
2, 3, 5, 10, 22, 61, 247, 2096, 81896, 52260575
a(9) from Andrew Howroyd, Aug 13 2019
approved
editing
proposed
approved
editing
proposed
allocated for Gus WisemanNumber of antichains of subsets of {1..n} with equal edge-sums.
2, 3, 5, 10, 22, 61, 247, 2096, 81896
0,1
An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.
The a(0) = 2 through a(4) = 22 antichains:
{} {} {} {} {}
{{}} {{}} {{}} {{}} {{}}
{{1}} {{1}} {{1}} {{1}}
{{2}} {{2}} {{2}}
{{1,2}} {{3}} {{3}}
{{1,2}} {{4}}
{{1,3}} {{1,2}}
{{2,3}} {{1,3}}
{{1,2,3}} {{1,4}}
{{3},{1,2}} {{2,3}}
{{2,4}}
{{3,4}}
{{1,2,3}}
{{1,2,4}}
{{1,3,4}}
{{2,3,4}}
{{1,2,3,4}}
{{3},{1,2}}
{{4},{1,3}}
{{1,4},{2,3}}
{{2,4},{1,2,3}}
{{3,4},{1,2,4}}
stableSets[u_, Q_]:=If[Length[u]==0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r==w||Q[r, w]||Q[w, r]], Q]]]];
cleqset[set_]:=stableSets[Subsets[set], SubsetQ[#1, #2]||Total[#1]!=Total[#2]&];
Table[Length[cleqset[Range[n]]], {n, 0, 5}]
allocated
nonn,more
Gus Wiseman, Jul 18 2019
approved
editing
allocated for Gus Wiseman
allocated
approved