proposed
approved
proposed
approved
editing
proposed
1, 2, 3, 4, 7, 9, 12, 16, 19, 49, 53, 63, 81, 84, 108, 112, 131, 144, 192, 256, 311, 361, 719, 931, 1197, 1539, 1596, 1619, 2052, 2128, 2401, 2736, 2809, 3087, 3648, 3671, 3969, 4116, 4864, 5103, 5292, 5488, 6561, 6804, 7056, 8161, 8748, 9072, 9408, 11664, 12096
1,12
1 is in the sequence because it has prime indices {} with sum 0 = 2^(-infinity).
1: {}
Select[Range[200001000], #==1||pow2Q[Total[primeMS[#]]]&&And@@pow2Q/@primeMS[#]&]
q:= n-> andmap(t-> t=2^ilog2(t), (l-> [l[], add(i, i=l)])(
map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))):
select(q, [$1..15000])[]; # Alois P. Heinz, Mar 28 2019
approved
editing
proposed
approved
editing
proposed
allocated for Gus WisemanHeinz numbers of integer partitions of powers of 2 into powers of 2.
2, 3, 4, 7, 9, 12, 16, 19, 49, 53, 63, 81, 84, 108, 112, 131, 144, 192, 256, 311, 361, 719, 931, 1197, 1539, 1596, 1619, 2052, 2128, 2401, 2736, 2809, 3087, 3648, 3671, 3969, 4116, 4864, 5103, 5292, 5488, 6561, 6804, 7056, 8161, 8748, 9072, 9408, 11664, 12096
1,1
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose prime indices are powers of 2 and whose sum of prime indices is also a power of 2. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
4: {1,1}
7: {4}
9: {2,2}
12: {1,1,2}
16: {1,1,1,1}
19: {8}
49: {4,4}
53: {16}
63: {2,2,4}
81: {2,2,2,2}
84: {1,1,2,4}
108: {1,1,2,2,2}
112: {1,1,1,1,4}
131: {32}
144: {1,1,1,1,2,2}
192: {1,1,1,1,1,1,2}
256: {1,1,1,1,1,1,1,1}
311: {64}
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
pow2Q[n_]:=IntegerQ[Log[2, n]];
Select[Range[20000], pow2Q[Total[primeMS[#]]]&&And@@pow2Q/@primeMS[#]&]
allocated
nonn
Gus Wiseman, Mar 27 2019
approved
editing
allocated for Gus Wiseman
allocated
approved