editing
approved
editing
approved
Differs from A028904 first at a(100)=90 whereas <> A028904(100)=81. - R. J. Mathar, Mar 03 2020
Differs from A081600 first at a(101)=90 whereas <> A081600(101)=91. - R. J. Mathar, Mar 03 2020
proposed
editing
editing
proposed
Differs from A028904 first at a(100)=90 whereas A028904(100)=81. - R. J. Mathar, Mar 03 2020
Differs from A081600 first at a(101)=90 whereas A081600(101)=91. - R. J. Mathar, Mar 03 2020
A324161 := proc(n)
option remember;
if n = 0 then
0;
else
convert(convert(n, base, 10), set) ;
if 0 in % then
procname(n-1) ;
else
1+procname(n-1) ;
end if;
end if;
end proc: # R. J. Mathar, Mar 03 2020
approved
editing
editing
approved
a(n) = n - 1 - Sum_{j=1..m} floor((b(n,k+1)-1)/b^j)*(b-1)^(j-1), if k = 0, (valid for n > b-1),;
a(n) = b(n,k) - 1 - Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), if k > 0, (valid for n > 0),;
a(n) <= ((b - 1)*(n + 1)^d - 1)/(b - 2) - 1,
a(n) >= (((b - 1)*n + b)^d - 1)/(b - 2) - 1,
a(n) = O(n^d(b)), for b > 2,
a(n) = O(log(n)), for b = 2.
lim inf a(n)/n^d = (b - 1)^d/(b - 2), for n --> infinity, for b > 2.
lim sup a(n)/n^d = (b - 1)/(b - 2), for n --> infinity, for b > 2.
lim a(n)/log(n) = 1/log(2), for n --> infinity.
proposed
editing
editing
proposed
Contribution from From _Hieronymus Fischer, _, Apr 04 2019 : (Start):
proposed
editing
editing
proposed
Contribution from Hieronymus Fischer, Apr 04 2019 (Start):
Formulas for general bases b > 2:
With m := floor(log_b(n)); k := Max_{j | j=1..m and (floor(n/b^j) mod b)*j = 0} = digit position of the leftmost '0' in n counted from the right (starting with 0), k = 0 if there is no '0' digit; b(n,k):= floor(n/b^k)*b^k:
a(n) = n - 1 - Sum_{j=1..m} floor((b(n,k+1)-1)/b^j)*(b-1)^(j-1), if k = 0, (valid for n > b-1),
a(n) = b(n,k) - 1 - Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), if k > 0, (valid for n > 0),
a(n) = b(n,k) - 1 + ceiling(fract(n/b))*(1-ceiling(k/(m+1))) - Sum_{j=1..m} floor((b(n,k)-1)/b^j)*(b-1)^(j-1), (all k, valid for n > 0).
Formula for base b = 2: a(n) = floor(log_2(n + 1)).
With d := d(b) := log(b - 1)/log(b).
Upper bound (b = 10 for this sequence):
a(n) <= ((b - 1)*(n + 1)^d - 1)/(b - 2) - 1,
equality holds for n = b^k - 1, k >= 0.
Lower bound (b = 10 for this sequence):
a(n) >= (((b - 1)*n + b)^d - 1)/(b - 2) - 1,
equality holds for n = (b^k - 1)/(b - 1) - 1, k > 0.
Asymptotic behavior (b = 10 for this sequence):
a(n) = O(n^d(b)), for b > 2,
a(n) = O(log(n)), for b = 2.
Lower and upper limits:
lim inf a(n)/n^d = (b - 1)^d/(b - 2), for n --> infinity, for b > 2.
lim sup a(n)/n^d = (b - 1)/(b - 2), for n --> infinity, for b > 2.
In case of b = 2:
lim a(n)/log(n) = 1/log(2), for n --> infinity.
(End)
approved
editing