login

Revision History for A320760

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of ordered set partitions of [n] where the maximal block size equals four.
(history; published version)
#7 by N. J. A. Sloane at Mon Dec 14 05:13:29 EST 2020
STATUS

proposed

approved

#6 by Jean-François Alcover at Mon Dec 14 03:20:51 EST 2020
STATUS

editing

proposed

#5 by Jean-François Alcover at Mon Dec 14 03:20:47 EST 2020
MATHEMATICA

b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];

a[n_] := With[{k = 4}, b[n, k] - b[n, k-1]];

a /@ Range[4, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)

STATUS

approved

editing

#4 by Alois P. Heinz at Sat Oct 20 17:43:42 EDT 2018
STATUS

editing

approved

#3 by Alois P. Heinz at Sat Oct 20 17:43:40 EDT 2018
LINKS

Alois P. Heinz, <a href="/A320760/b320760.txt">Table of n, a(n) for n = 4..424</a>

#2 by Alois P. Heinz at Sat Oct 20 17:42:06 EDT 2018
NAME

allocated for Alois P. Heinz

Number of ordered set partitions of [n] where the maximal block size equals four.

DATA

1, 10, 120, 1540, 21490, 326970, 5402250, 96500250, 1855334250, 38228190000, 840776937000, 19666511865000, 487617137007000, 12776791730703000, 352825452012033000, 10242418813814187000, 311854958169459705000, 9937942309809373860000, 330821844137019184950000

OFFSET

4,2

FORMULA

E.g.f.: 1/(1-Sum_{i=1..4} x^i/i!) - 1/(1-Sum_{i=1..3} x^i/i!).

a(n) = A276924(n) - A189886(n).

MAPLE

b:= proc(n, k) option remember; `if`(n=0, 1, add(

b(n-i, k)*binomial(n, i), i=1..min(n, k)))

end:

a:= n-> (k-> b(n, k) -b(n, k-1))(4):

seq(a(n), n=4..25);

CROSSREFS

Column k=4 of A276922.

Cf. A189886, A276924.

KEYWORD

allocated

nonn

AUTHOR

Alois P. Heinz, Oct 20 2018

STATUS

approved

editing

#1 by Alois P. Heinz at Sat Oct 20 17:24:21 EDT 2018
NAME

allocated for Alois P. Heinz

KEYWORD

allocated

STATUS

approved