proposed
approved
proposed
approved
editing
proposed
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];
a[n_] := With[{k = 4}, b[n, k] - b[n, k-1]];
a /@ Range[4, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
approved
editing
editing
approved
Alois P. Heinz, <a href="/A320760/b320760.txt">Table of n, a(n) for n = 4..424</a>
allocated for Alois P. Heinz
Number of ordered set partitions of [n] where the maximal block size equals four.
1, 10, 120, 1540, 21490, 326970, 5402250, 96500250, 1855334250, 38228190000, 840776937000, 19666511865000, 487617137007000, 12776791730703000, 352825452012033000, 10242418813814187000, 311854958169459705000, 9937942309809373860000, 330821844137019184950000
4,2
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(4):
seq(a(n), n=4..25);
allocated
nonn
Alois P. Heinz, Oct 20 2018
approved
editing
allocated for Alois P. Heinz
allocated
approved