login

Revision History for A318290

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of Sum_{k>=1} (-1 + Product_{j>=1} (1 + j*x^(k*j))).
(history; published version)
#9 by Bruno Berselli at Wed Apr 03 02:59:03 EDT 2019
STATUS

editing

approved

#8 by Paolo P. Lava at Tue Apr 02 05:09:59 EDT 2019
MAPLE

a:=series(add(-1+mul(1+j*x^(k*j), j=1..100), k=1..100), x=0, 42): seq(coeff(a, x, n), n=1..41); # Paolo P. Lava, Apr 02 2019

STATUS

approved

editing

#7 by Bruno Berselli at Fri Aug 24 06:35:18 EDT 2018
STATUS

reviewed

approved

#6 by Joerg Arndt at Fri Aug 24 01:34:47 EDT 2018
STATUS

proposed

reviewed

#5 by Ilya Gutkovskiy at Thu Aug 23 18:45:38 EDT 2018
STATUS

editing

proposed

#4 by Ilya Gutkovskiy at Thu Aug 23 18:42:05 EDT 2018
MATHEMATICA

b[n_] := b[n] = SeriesCoefficient[Product[(1 + k x^k) , , {k, 1, n}], {x, 0, n}]; a[n_] := a[n] = SeriesCoefficient[Sum[b[k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 41}]

b[0] = 1; b[n_] := b[n] = Sum[Sum[(-d)^(k/d + 1), {d, Divisors[k]}] b[n - k], {k, 1, n}]/n ; a[n_] := a[n] = Sum[b[d], {d, Divisors[n]}]; Table[a[n], {n, 41}]

#3 by Ilya Gutkovskiy at Thu Aug 23 18:38:06 EDT 2018
CROSSREFS
#2 by Ilya Gutkovskiy at Thu Aug 23 18:12:57 EDT 2018
NAME

allocated for Ilya Gutkovskiy

Expansion of Sum_{k>=1} (-1 + Product_{j>=1} (1 + j*x^(k*j))).

DATA

1, 3, 6, 10, 16, 33, 44, 74, 126, 204, 289, 503, 696, 1151, 1749, 2599, 3742, 5928, 8245, 12658, 18351, 26715, 37828, 55296, 78346, 111882, 159664, 226782, 315416, 446670, 618667, 860764, 1199995, 1649820, 2289020, 3157349, 4303996, 5878786, 8033272, 10894516, 14749052

OFFSET

1,2

COMMENTS

Inverse Moebius transform of A022629.

LINKS

N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

FORMULA

G.f.: Sum_{k>=1} A022629(k)*x^k/(1 - x^k).

a(n) = Sum_{d|n} A022629(d).

MATHEMATICA

nmax = 41; Rest[CoefficientList[Series[Sum[-1 + Product[(1 + j x^(k j)), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]]

b[n_] := b[n] = SeriesCoefficient[Product[(1 + k x^k) , {k, 1, n}], {x, 0, n}]; a[n_] := a[n] = SeriesCoefficient[Sum[b[k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 41}]

b[0] = 1; b[n_] := b[n] = Sum[Sum[(-d)^(k/d + 1), {d, Divisors[k]}] b[n - k], {k, 1, n}]/n ; a[n_] := a[n] = Sum[b[d], {d, Divisors[n]}]; Table[a[n], {n, 41}]

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Ilya Gutkovskiy, Aug 23 2018

STATUS

approved

editing

#1 by Ilya Gutkovskiy at Thu Aug 23 18:12:57 EDT 2018
NAME

allocated for Ilya Gutkovskiy

KEYWORD

allocated

STATUS

approved