editing
approved
editing
approved
More terms a(20)-a(28) from Vaclav Kotesovec, Apr 20 2019
a(29)-a(37) from Vaclav Kotesovec, Apr 23 2019
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 0, 6, 0, 27, 13, 59, 390, 661, 4933, 9760, 49415, 101967, 341887, 702884, 2209559, 5361004, 15472531, 34165997, 82258594, 193682533, 490404772, 1210929426, 2725005202, 6283337761, 13672859806, 34906926846
nonn,more,new
approved
editing
editing
approved
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 0, 6, 0, 27, 13, 59, 390, 661, 4933, 9760, 49415, 101967, 341887, 702884, 2209559, 5361004, 15472531
More terms from Vaclav Kotesovec, Apr 20 2019
approved
editing
proposed
approved
editing
proposed
allocated for Ilya GutkovskiyNumber of partitions of n^4 into exactly n nonzero fourth powers.
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 0, 6, 0, 27, 13, 59, 390, 661
0,12
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number</a>
11^4 =
1^4 + 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 8^4 + 8^4 + 8^4 =
2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4 =
2^4 + 2^4 + 2^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 9^4,
so a(11) = 3.
allocated
nonn,more
Ilya Gutkovskiy, Apr 19 2019
approved
editing
allocated for Ilya Gutkovskiy
recycled
allocated
recycled
approved