proposed
approved
proposed
approved
editing
proposed
G. C. Greubel, <a href="/A307059/b307059_1.txt">Table of n, a(n) for n = 0..2500</a>
reviewed
approved
proposed
reviewed
editing
proposed
Alternating row sums of Riordan triangle (1, 1 -( Product_{j>=1} - (1-x^j) ), See A341418(n, m) without column {1, repeat(0)} for m = 0 and n >= 0. - Wolfdieter Lang, Feb 17 2021
G. C. Greubel, <a href="/A307059/b307059_1.txt">Table of n, a(n) for n = 0..2500</a>
G.f.: 1/(2 - QPochhammer(n,x,x)). - G. C. Greubel, Sep 08 2023
nmax = 65; CoefficientList[Series[1/(2 - Product[(1 - x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
(Magma)
m:=80;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[1 - x^j: j in [1..m+2]])) )); // G. C. Greubel, Sep 08 2023
(SageMath)
from sage.modular.etaproducts import qexp_eta
m=80;
def f(x): return 1/(2 - qexp_eta(QQ[['q']], m+2).subs(q=x) )
def A307059_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307059_list(m) # G. C. Greubel, Sep 08 2023
approved
editing
reviewed
approved