editing
approved
editing
approved
R. H. Hardin, <a href="/A296386/b296386.txt">Table of n, a(n) for n = 1..337</a>
allocated for R. H. Hardin
T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 1 or 2 neighboring 1s.
1, 2, 2, 4, 10, 4, 7, 28, 28, 7, 12, 86, 127, 86, 12, 21, 279, 641, 641, 279, 21, 37, 869, 3237, 5389, 3237, 869, 37, 65, 2728, 16248, 46786, 46786, 16248, 2728, 65, 114, 8596, 81661, 396806, 684894, 396806, 81661, 8596, 114, 200, 27004, 410199, 3372222
1,2
Table starts
...1.....2.......4.........7..........12............21..............37
...2....10......28........86.........279...........869............2728
...4....28.....127.......641........3237.........16248...........81661
...7....86.....641......5389.......46786........396806.........3372222
..12...279....3237.....46786......684894.......9703136.......138882856
..21...869...16248....396806.....9703136.....229596763......5498685275
..37..2728...81661...3372222...138882856....5498685275....221204933878
..65..8596..410199..28724880..1988460073..131626644289...8887761158698
.114.27004.2061212.244493344.28434977556.3147315906687.356576134627608
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) -a(n-2) +6*a(n-3) -6*a(n-4) +6*a(n-5) -5*a(n-6) +3*a(n-7) -a(n-8)
k=3: [order 16]
k=4: [order 40]
k=5: [order 92]
Some solutions for n=5 k=4
..0..1..1..0. .0..0..0..0. .1..0..0..1. .0..1..0..1. .0..0..0..1
..0..0..0..0. .0..0..0..1. .1..1..0..1. .1..0..0..1. .0..1..1..0
..0..0..1..0. .0..0..0..1. .0..0..0..0. .1..1..0..0. .1..0..0..0
..0..1..0..1. .1..0..0..0. .0..1..1..0. .0..0..1..1. .1..0..0..0
..0..0..1..0. .1..1..0..0. .1..0..1..1. .0..0..0..0. .1..0..0..0
Column 1 is A005251(n+2).
allocated
nonn,tabl
R. H. Hardin, Dec 11 2017
approved
editing
allocated for R. H. Hardin
allocated
approved