login

Revision History for A293304

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of Product_{k>=1} (1 + x^(2*k-1) + 2*x^(4*k-2)).
(history; published version)
#4 by Vaclav Kotesovec at Thu Oct 05 11:33:56 EDT 2017
STATUS

editing

approved

#3 by Vaclav Kotesovec at Thu Oct 05 11:33:15 EDT 2017
LINKS

Vaclav Kotesovec, <a href="/A293304/b293304.txt">Table of n, a(n) for n = 0..2000</a>

#2 by Vaclav Kotesovec at Thu Oct 05 11:32:31 EDT 2017
NAME

allocated for Vaclav Kotesovec

Expansion of Product_{k>=1} (1 + x^(2*k-1) + 2*x^(4*k-2)).

DATA

1, 1, 2, 1, 1, 3, 3, 5, 6, 4, 6, 8, 11, 13, 13, 18, 19, 23, 29, 32, 35, 40, 48, 51, 65, 78, 86, 96, 102, 121, 142, 162, 179, 199, 220, 251, 289, 323, 359, 395, 450, 499, 562, 631, 695, 762, 840, 952, 1055, 1167, 1292, 1413, 1557, 1733, 1903, 2112, 2323, 2534

OFFSET

0,3

FORMULA

a(n) ~ c^(1/4) * exp(sqrt(2*c*n)) / (2^(5/4) * sqrt(Pi) * n^(3/4)), where c = -polylog(2, -1/2 + I*sqrt(7)/2) - polylog(2, -1/2 - I*sqrt(7)/2) = 1.323865936864425754643630663383779192757247984691212163137...

MATHEMATICA

nmax = 100; CoefficientList[Series[Product[(1 + x^(2*k-1) + 2*x^(4*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A293072.

KEYWORD

allocated

nonn

AUTHOR

Vaclav Kotesovec, Oct 05 2017

STATUS

approved

editing

#1 by Vaclav Kotesovec at Thu Oct 05 11:32:31 EDT 2017
NAME

allocated for Vaclav Kotesovec

KEYWORD

allocated

STATUS

approved