proposed
approved
proposed
approved
editing
proposed
proposed
editing
editing
proposed
G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/(Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/(Product_{k = 1..n} (1 - x^k). (End)
proposed
editing
editing
proposed
S := convert(series( (1/2)*add( (-1)^n*x)^(n*(2*n-+1)/2)/(mul(1 - x^k, k = 1..2*n)), n = 0..1+floor(sqrt(2*N/2)) ), x, N+1 ), polynom):
From Peter Bala, Jan 15 2021: (Start)
G.f.: A(1/2x)* = Sum_{n >= 0} (-1)^n*x)^(n*(2*n-+1)/2)/(Product_{k = 1..2*n} 1 - x^k). Cf. A035294. - _Peter Bala_, Jan 15 2021
Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/(Product_{k = 1..n} 1 - x^k). (End)
G.f.: (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} 1 - x^k. - Peter Bala, Jan 15 2021
N:= 100:
S := convert(series( (1/2)*add( (-x)^(n*(n-1)/2)/(mul(1 - x^k, k = 1..n)), n = 0..1+floor(sqrt(2*N)) ), x, N+1 ), polynom):
seq(coeff(S, x, n), n = 0..N); # Peter Bala, Jan 15 2021
approved
editing
proposed
approved