reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Unitary phibonacci numbers: solutions n k of the equation uphi(nk) = uphi(nk-1) + uphi(nk-2), where uphi(nk) is the unitary totient function (A047994).
3, 4, 7, 23, 9179, 244967, 14307856, 24571871, 128199059, 140830367, 401767631, 420567856, 468190439, 525970979, 780768167, 886434647, 1597167647, 4046753951, 4473784823, 5364666167, 5515718207, 11175736336, 14408460167, 18026319712, 20106993887, 20357733131
(PARI) uphi(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[1, i, 2]-1);
nonn,more
nonn
a(18)-a(26) from Amiram Eldar, Mar 01 2020
approved
editing
proposed
approved
editing
proposed
(PARI) uphi(n) = prodmy(i=1, #nf=factor(n)~, n[); prod(i=1, #f~, f[i, 1]^nf[1, 2, i]-1);
approved
editing
proposed
approved
editing
proposed
(PARI) uphi(n) = prod(i=1, #n=factor(n)~, n[1, i]^n[2, i]-1);
isok(n) = uphi(n)==uphi(n-1)+uphi(n-2); \\ Altug Alkan, Sep 08 2017
proposed
editing