login

Revision History for A291337

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 2 S - 2 S^3.
(history; published version)
#9 by Alois P. Heinz at Fri Jun 02 21:52:10 EDT 2023
STATUS

proposed

approved

#8 by G. C. Greubel at Thu Jun 01 01:28:57 EDT 2023
STATUS

editing

proposed

#7 by G. C. Greubel at Thu Jun 01 01:26:26 EDT 2023
LINKS

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5, -7, 5).

FORMULA

G.f.: -((3 (1 - 2 *x + 5 2*x)^2)/(-1 - 5*x + 4 7*x)^2 - 5*x^3).

a(n) = (1/2)*A291337A291005(n) for n >= 0.

PROG

(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x+2*x^2)/(1-5*x+7*x^2-5*x^3) )); // G. C. Greubel, Jun 01 2023

(SageMath)

def A291337_list(prec):

P.<x> = PowerSeriesRing(ZZ, prec)

return P( (1-2*x+2*x^2)/(1-5*x+7*x^2-5*x^3) ).list()

A291337_list(30) # G. C. Greubel, Jun 01 2023

STATUS

approved

editing

Discussion
Thu Jun 01
01:28
G. C. Greubel: Corrected the gf. The gf was a duplicate of A291004's gf and was in error. Correct gf obtained from A291005.
#6 by Susanna Cuyler at Wed Aug 23 16:04:38 EDT 2017
STATUS

proposed

approved

#5 by Clark Kimberling at Wed Aug 23 13:22:37 EDT 2017
STATUS

editing

proposed

#4 by Clark Kimberling at Wed Aug 23 13:21:52 EDT 2017
MATHEMATICA

z = 60; s = -((2 (1 - 2 x + 2 x^2))/(-1 + 5 x s - 7 x^2 + 5 xs^3));

u / 2 (* A291337 *)

STATUS

proposed

editing

#3 by Clark Kimberling at Wed Aug 23 11:48:01 EDT 2017
STATUS

editing

proposed

#2 by Clark Kimberling at Wed Aug 23 11:21:21 EDT 2017
NAME

allocated for Clark Kimberlingp-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 2 S - 2 S^3.

DATA

1, 3, 10, 34, 115, 387, 1300, 4366, 14665, 49263, 165490, 555934, 1867555, 6273687, 21075220, 70798066, 237832225, 798950763, 2683918570, 9016098634, 30287816995, 101745987387, 341795711140, 1148195728966, 3857138603785, 12957301471863, 43527515777650

OFFSET

0,2

LINKS

Clark Kimberling, <a href="/A291337/b291337.txt">Table of n, a(n) for n = 0..1000</a>

<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5, -7, 5)

FORMULA

G.f.: -((3 (-2 + 5 x))/(-1 + 4 x)^2).

a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) for n >= 4.

a(n) = 2*A291337(n) for n >= 0.

MATHEMATICA

z = 60; s = -((2 (1 - 2 x + 2 x^2))/(-1 + 5 x - 7 x^2 + 5 x^3));

Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)

u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291005 *)

u / 2 (*A291337)

CROSSREFS
KEYWORD

allocated

nonn,easy

AUTHOR

Clark Kimberling, Aug 23 2017

STATUS

approved

editing

#1 by Clark Kimberling at Tue Aug 22 12:54:08 EDT 2017
NAME

allocated for Clark Kimberling

KEYWORD

allocated

STATUS

approved