proposed
approved
proposed
approved
editing
proposed
Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n!6+69&action
proposed
editing
editing
proposed
allocated for Robert PriceNumbers k such that k!6 + 9 is prime, where k!6 is the sextuple factorial number (A085158 ).
2, 4, 14, 28, 34, 46, 50, 52, 86, 100, 106, 140, 166, 170, 208, 242, 338, 344, 412, 1360, 2024, 2948, 3650, 5608, 5744, 7618, 8410, 8834, 11872, 12514, 13636, 18742, 20846, 29750, 31312
1,1
Corresponding primes are: 11, 13, 233, 394249, 13404169, 24663654409, 311607296009, ...
a(36) > 50000.
Terms > 50 correspond to probable primes.
Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n!6+6&action=Search
Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa
OpenPFGW Project, <a href="http://sourceforge.net/projects/openpfgw/">Primality Tester</a>
14!6 + 9 = 14*8*2 + 9 = 233 is prime, so 14 is in the sequence.
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 6] + 9] &]
allocated
nonn,more,new
Robert Price, Jun 05 2017
approved
editing
allocated for Robert Price
allocated
approved