login

Revision History for A278135

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of horizontal steps in the valleys of all bargraphs having semiperimeter n (n >=2).
(history; published version)
#6 by R. J. Mathar at Fri Jul 22 10:16:04 EDT 2022
STATUS

editing

approved

#5 by R. J. Mathar at Fri Jul 22 10:15:59 EDT 2022
FORMULA

Conjecture D-finite with recurrence -7*(n+1)*(n-6)*a(n) +3*(13*n^2-69*n+14)*a(n-1) +(-61*n^2+331*n-256)*a(n-2) +3*(11*n^2-59*n+68)

*a(n-3) -(n-2)*(9*n-25)*a(n-4) +(9*n^2-55*n+80)*a(n-5) -(3*n-4)*(n-5)*a(n-6) -(n-5)*(n-6)*a(n-7)=0. - R. J. Mathar, Jul 22 2022

STATUS

approved

editing

#4 by N. J. A. Sloane at Fri Jan 06 10:53:56 EST 2017
STATUS

proposed

approved

#3 by Emeric Deutsch at Fri Jan 06 09:23:55 EST 2017
STATUS

editing

proposed

#2 by Emeric Deutsch at Fri Jan 06 09:23:50 EST 2017
NAME

allocated for Emeric DeutschNumber of horizontal steps in the valleys of all bargraphs having semiperimeter n (n >=2).

DATA

0, 0, 0, 0, 1, 9, 51, 236, 979, 3805, 14190, 51488, 183333, 644121, 2241127, 7741378, 26593899, 90971184, 310159487, 1054693058, 3578948942, 12124108632, 41015411703, 138597840864, 467913141789, 1578497031981, 5321685955902, 17931990439148, 60397664457791, 203355625940891

OFFSET

2,6

LINKS

A. Blecher, C. Brennan, and A. Knopfmacher, <a href="http://dx.doi.org/10.1080/0035919X.2015.1059905">Peaks in bargraphs</a>, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.

FORMULA

G.f.: g(z) = 2z^6/(Q(R + (1-3z+z^2)(1-z)^2*Q)), where Q = sqrt((1-z)(1-3z-z^2-z^3)) and R = 1 - 7z + 17z^2 - 18z^3 + 9z^4 - 3z^5 + z^6.

a(n) = Sum(k*A278134(n,k), k>=0).

EXAMPLE

a(6) = 1 because among the 35 (=A082582(6)) bargraphs of semiperimeter 6 only one has a valley; it corresponds to the composition [2,1,2] and its width is 1.

MAPLE

Q := sqrt((1-z)*(1-3*z-z^2-z^3)): R := 1-7*z+17*z^2-18*z^3+9*z^4-3*z^5+z^6: g := 2*z^6/(Q*(R+(1-3*z+z^2)*(1-z)^2*Q)): gser := series(g, z = 0, 35): seq(coeff(gser, z, j), j = 2 .. 33);

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Emeric Deutsch, Jan 06 2017

STATUS

approved

editing

#1 by Emeric Deutsch at Sat Nov 12 19:01:48 EST 2016
NAME

allocated for Emeric Deutsch

KEYWORD

allocated

STATUS

approved