editing
approved
editing
approved
R. H. Hardin, <a href="/A271034/b271034.txt">Table of n, a(n) for n = 1..146</a>
allocated for R. H. Hardin
T(n,k)=Number of nXnXn triangular 0..k arrays with some element less than a w, nw or ne neighbor exactly once.
0, 0, 2, 0, 8, 10, 0, 20, 72, 34, 0, 40, 294, 450, 98, 0, 70, 896, 3114, 2420, 258, 0, 112, 2268, 15116, 29120, 12010, 642, 0, 168, 5040, 58036, 232432, 256020, 56754, 1538, 0, 240, 10164, 188034, 1402082, 3441072, 2173554, 259628, 3586, 0, 330, 19008, 535106
1,3
Table starts
....0.......0.........0...........0............0..............0...............0
....2.......8........20..........40...........70............112.............168
...10......72.......294.........896.........2268...........5040...........10164
...34.....450......3114.......15116........58036.........188034..........535106
...98....2420.....29120......232432......1402082........6872424........28658242
..258...12010....256020.....3441072.....33505396......255757328......1610555756
..642...56754...2173554....50108414....804566180.....9790184488.....95420380090
.1538..259628..18060096...724727082..19525545192...386105784866...5945425725202
.3586.1160936.147976270.10461499634.479803630966.15669594394610.387907415514308
Empirical for column k:
k=1: a(n) = 5*a(n-1) -8*a(n-2) +4*a(n-3)
Empirical for row n:
n=2: a(n) = (1/3)*n^3 + n^2 + (2/3)*n
n=3: [polynomial of degree 6]
n=4: [polynomial of degree 10]
n=5: [polynomial of degree 15]
n=6: [polynomial of degree 21]
Some solutions for n=4 k=4
.....0........0........0........1........0........1........0........0
....0.0......0.3......1.0......2.3......0.0......1.1......0.2......0.0
...1.0.0....3.3.3....3.4.4....3.4.4....0.1.3....0.1.2....0.2.2....1.1.0
..1.1.1.1..4.4.3.4..4.4.4.4..3.3.4.4..2.4.3.3..2.3.4.4..0.0.2.3..4.4.4.4
allocated
nonn,tabl
R. H. Hardin, Mar 29 2016
approved
editing
allocated for R. H. Hardin
allocated
approved