First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 173", based on the 5-celled von Neumann neighborhood.
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 173", based on the 5-celled von Neumann neighborhood.
reviewed
approved
proposed
reviewed
editing
proposed
N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
proposed
editing
editing
proposed
Robert Price, <a href="/A270468/b270468.txt">Table of n, a(n) for n = 0..127</a>
approved
editing
proposed
approved
editing
proposed
allocated for Robert PriceFirst differences of number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 173", based on the 5-celled von Neumann neighborhood.
7, -4, 36, -23, 95, -92, 160, -119, 263, -283, 395, -320, 528, -571, 747, -627, 891, -964, 1188, -1028, 1348, -1480, 1784, -1572, 1920, -2044, 2384, -2108, 2528, -2764, 3176, -2836, 3372, -3560, 3772, -3248, 3884, -4356, 5088, -4656, 5200, -5508, 5988, -5372
0,1
Initialized with a single black (ON) cell at stage zero.
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
<a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
<a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
<a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=173; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
Cf. A270465.
allocated
sign,easy
Robert Price, Mar 17 2016
approved
editing