login

Revision History for A269719

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Numbers whose arithmetic derivative is equal to the sum of some fixed power of their digits.
(history; published version)
#8 by Bruno Berselli at Thu Mar 17 04:22:41 EDT 2016
STATUS

proposed

approved

#7 by Michael De Vlieger at Fri Mar 04 10:53:09 EST 2016
STATUS

editing

proposed

#6 by Michael De Vlieger at Fri Mar 04 10:53:02 EST 2016
MATHEMATICA

f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range[3, 10^5], Function[k, IntegerQ@ SelectFirst[Range[0, 10], Function[d, If[MemberQ[d, 0] && # == 0, Total@ Power[d /. 0 -> Nothing, #] == f@ k, Total@ Power[d, #] == f@ k]]@ IntegerDigits@ k &]]] (* Michael De Vlieger, Mar 04 2016, Version 10, f(n) after Michael Somos at A003415 *)

STATUS

proposed

editing

#5 by Paolo P. Lava at Fri Mar 04 10:31:50 EST 2016
STATUS

editing

proposed

#4 by Paolo P. Lava at Fri Mar 04 10:31:46 EST 2016
DATA

3, 4, 5, 7, 142, 581, 6127, 8549, 12643, 16999, 51703, 57121, 86833, 89195, 92029, 103039, 104647, 112093, 137317, 149851, 218269, 261883, 266923, 323723, 336273, 449881, 505891, 524371, 610171, 617569, 907873, 999643, 1119253, 1134227, 1728787, 1900523, 2045171

LINKS

Paolo P. Lava, <a href="/A269719/a269719_1.txt">Terms of the sequence and their fixed power</a>

#3 by Paolo P. Lava at Fri Mar 04 09:57:46 EST 2016
LINKS

Paolo P. Lava, <a href="/A269719/a269719.txt">Terms of the sequence and their fixed power</a>

#2 by Paolo P. Lava at Fri Mar 04 09:54:30 EST 2016
NAME

allocated for Paolo P. Lava

Numbers whose arithmetic derivative is equal to the sum of some fixed power of their digits.

DATA

3, 4, 5, 7, 142, 581, 6127, 8549, 12643, 16999, 51703, 57121, 86833, 89195, 92029, 103039, 104647, 112093, 137317, 149851, 218269, 261883, 266923, 323723, 336273, 449881, 505891, 524371, 610171, 617569, 907873, 999643, 1119253, 1134227

OFFSET

1,1

EXAMPLE

3^0 = 1 and 3' = 1;

4^1 = 4 and 4' = 4;

1^3 + 4^3 + 2^3 = 73 and 143' = 73.

MAPLE

with(numtheory): P:= proc(q) local a, b, c, d, j, k, n, ok; for n from 3 to q do a:=[]; b:=n; ok:=0;

d:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]); a:=[]; b:=n; ok:=0;

for k from 1 to ilog10(n)+1 do if (b mod 10)>1 then ok:=1; fi; a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; b:=-1; c:=0;

if ok=1 then while c<d do b:=b+1;

if b>0 then c:=add(a[k]^b, k=1..nops(a)); else for k from 1 to nops(a) do if a[k]=0 then c:=0; break;

else c:=c+1; fi; od; fi; od; if c=d then lprint(n, b); fi; fi; od; end: P(10^9);

CROSSREFS

Cf. A003415.

KEYWORD

allocated

nonn,easy

AUTHOR

Paolo P. Lava, Mar 04 2016

STATUS

approved

editing

#1 by Paolo P. Lava at Fri Mar 04 09:54:30 EST 2016
NAME

allocated for Paolo P. Lava

KEYWORD

allocated

STATUS

approved