proposed
approved
proposed
approved
editing
proposed
f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range[3, 10^5], Function[k, IntegerQ@ SelectFirst[Range[0, 10], Function[d, If[MemberQ[d, 0] && # == 0, Total@ Power[d /. 0 -> Nothing, #] == f@ k, Total@ Power[d, #] == f@ k]]@ IntegerDigits@ k &]]] (* Michael De Vlieger, Mar 04 2016, Version 10, f(n) after Michael Somos at A003415 *)
proposed
editing
editing
proposed
3, 4, 5, 7, 142, 581, 6127, 8549, 12643, 16999, 51703, 57121, 86833, 89195, 92029, 103039, 104647, 112093, 137317, 149851, 218269, 261883, 266923, 323723, 336273, 449881, 505891, 524371, 610171, 617569, 907873, 999643, 1119253, 1134227, 1728787, 1900523, 2045171
Paolo P. Lava, <a href="/A269719/a269719_1.txt">Terms of the sequence and their fixed power</a>
Paolo P. Lava, <a href="/A269719/a269719.txt">Terms of the sequence and their fixed power</a>
allocated for Paolo P. Lava
Numbers whose arithmetic derivative is equal to the sum of some fixed power of their digits.
3, 4, 5, 7, 142, 581, 6127, 8549, 12643, 16999, 51703, 57121, 86833, 89195, 92029, 103039, 104647, 112093, 137317, 149851, 218269, 261883, 266923, 323723, 336273, 449881, 505891, 524371, 610171, 617569, 907873, 999643, 1119253, 1134227
1,1
3^0 = 1 and 3' = 1;
4^1 = 4 and 4' = 4;
1^3 + 4^3 + 2^3 = 73 and 143' = 73.
with(numtheory): P:= proc(q) local a, b, c, d, j, k, n, ok; for n from 3 to q do a:=[]; b:=n; ok:=0;
d:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]); a:=[]; b:=n; ok:=0;
for k from 1 to ilog10(n)+1 do if (b mod 10)>1 then ok:=1; fi; a:=[(b mod 10), op(a)]; b:=trunc(b/10); od; b:=-1; c:=0;
if ok=1 then while c<d do b:=b+1;
if b>0 then c:=add(a[k]^b, k=1..nops(a)); else for k from 1 to nops(a) do if a[k]=0 then c:=0; break;
else c:=c+1; fi; od; fi; od; if c=d then lprint(n, b); fi; fi; od; end: P(10^9);
Cf. A003415.
allocated
nonn,easy
Paolo P. Lava, Mar 04 2016
approved
editing
allocated for Paolo P. Lava
allocated
approved