proposed
approved
proposed
approved
editing
proposed
(PARI) tf(n) = prod(i=0, (n-1)\3, n-3*i);
for(n=1, 1e4, if(ispseudoprime(tf(n) - 3^10), print1(n , ", "))) \\ Altug Alkan, Dec 04 2015
proposed
editing
editing
proposed
allocated for Robert PriceNumbers n such that n!!! - 3^10 is prime, where n!3 = n!!! is a triple factorial number (A007661)..
19, 20, 22, 26, 41, 55, 56, 152, 155, 316, 347, 383, 500, 556, 646, 656, 748, 976, 1433, 2213, 2680, 2911, 3373, 4799, 4964, 7189, 8798, 9871, 14069, 14627, 16657, 20230, 24137, 24430, 28331, 36313, 41522, 43031, 46072, 47719
1,1
Corresponding primes are 1047511, 4129751, 24285271, 2504843351, 126757680265156951, ... .
a(41) > 50000.
Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=n!3-59049&action=Search">PRP Records. Search for n!3-59049.</a>
Joe McLean, <a href="http://web.archive.org/web/20091027034731/http://uk.geocities.com/nassarawa
19!3 - 3^10 = 19*16*13*10*7*4*1 - 59049 = 1047511 is prime, so 19 is in the sequence.
MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
Select[Range[17, 50000], PrimeQ[MultiFactorial[#, 3] - 3^10] &]
allocated
hard,more,nonn
Robert Price, Dec 04 2015
approved
editing
allocated for Robert Price
allocated
approved