reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A263538/b263538.txt">Table of n, a(n) for n = 0..2500</a>
a:= With[{nmax = 50}, CoefficientList[Series[(QPochhammer[x^2]^3 + 9*x^2*QPochhammer[x^18]^3)*QPochhammer[x^2]^2*QPochhammer[x^6]/ (QPochhammer[x]*QPochhammer[x^3]^5), {x, 0, nmax}], x]]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 31 2018 *)
approved
editing
editing
approved
allocated for Michael SomosExpansion of 3 * a(q^2) * b(q^2) * c(q^2) / (b(q) * c(q)^2) in powers of q where a(), b(), c() are cubic AGM theta functions.
1, 1, 6, 12, 5, 36, 60, 24, 150, 228, 86, 504, 732, 262, 1488, 2088, 725, 3996, 5460, 1852, 9972, 13344, 4436, 23472, 30876, 10103, 52644, 68268, 22040, 113364, 145224, 46336, 235734, 298800, 94378, 475488, 597108, 186926, 933672, 1162824, 361126, 1790028
0,3
a(n) = A262930(2*n).
G.f. = 1 + x + 6*x^2 + 12*x^3 + 5*x^4 + 36*x^5 + 60*x^6 + 24*x^7 + 150*x^8 + ...
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 + 9 * x^2 * eta(x^18 + A)^3) * eta(x^2 + A)^2 * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)^5), n))};
Cf. A262930.
allocated
nonn
Michael Somos, Oct 20 2015
approved
editing
allocated for Michael Somos
allocated
approved