proposed
approved
proposed
approved
editing
proposed
For any positive integer n, if a number of the form m^2+1 is divisible by 5^n, then m mod 5^n must take one of two values--one even, the other odd. This sequence gives the even residue. (The odd residues are in A259266.)
More terms and additional comments from Jon E. Schoenfield, Jun 23 2015
a(n) is the unique even-valued residue modulo- 5^n residue of a number m such that m^2+1 is divisible by 5^n.
2, 18, 68, 182, 1068, 1068, 32318, 280182, 280182, 3626068, 23157318, 120813568, 1097376068, 1097376068, 11109655182, 49925501068, 355101282318, 355101282318, 15613890344818, 15613890344818, 365855836217682, 2273204469030182, 2273204469030182, 49956920289342682
approved
editing
proposed
approved
editing
proposed
proposed
editing
editing
proposed
allocated for Jon E. Schoenfield
a(n) is the unique even-valued modulo-5^n residue of a number m such that m^2+1 is divisible by 5^n.
2, 18, 68, 182, 1068, 1068, 32318, 280182, 280182, 3626068, 23157318, 120813568, 1097376068, 1097376068, 11109655182, 49925501068, 355101282318, 355101282318, 15613890344818, 15613890344818
1,1
For any positive integer n, if a number of the form m^2+1 is divisible by 5^n, then m mod 5^n must take one of two values--one even, the other odd. This sequence gives the even residue.
If m^2+1 is divisible by 5, then m mod 5 is either 2 or 3; the even value is 2, so a(1)=2.
If m^2+1 is divisible by 5^2, then m mod 5^2 is either 7 or 18; the even value is 18, so a(2)=18.
If m^2+1 is divisible by 5^3, then m mod 5^3 is either 57 or 68; the even value is 68, so a(3)=68.
Cf. A257366.
allocated
nonn
Jon E. Schoenfield, Jun 15 2015
approved
editing