reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Number of (n+1) X (2+1) 0..1 arrays with every 2X2 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
Column 2 of A258554
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 3*a(n-4) - 4*a(n-5) + 2*a(n-6) + 2*a(n-7) - 3*a(n-8) + a(n-9) for n>11.
Empirical g.f.: x*(44 - 64*x + 68*x^2 - 16*x^3 - 43*x^4 + 18*x^5 + 12*x^6 - 12*x^7 - 2*x^8 + 6*x^9 - x^10) / ((1 - x)^3*(1 - x - x^2 - x^4 + x^6)). - Colin Barker, Dec 21 2018
Some solutions for n=4:
approved
editing
editing
approved
R. H. Hardin, <a href="/A258548/b258548.txt">Table of n, a(n) for n = 1..210</a>
allocated for R. H. Hardin
Number of (n+1)X(2+1) 0..1 arrays with every 2X2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically
44, 112, 296, 652, 1329, 2530, 4667, 8419, 14932, 26184, 45561, 78903, 136170, 234461, 403075, 692272, 1188185, 2038466, 3496239, 5995441, 10279967, 17625041, 30216773, 51802782, 88807568, 152244537, 260993810, 447421309, 767011467
1,1
Column 2 of A258554
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +3*a(n-4) -4*a(n-5) +2*a(n-6) +2*a(n-7) -3*a(n-8) +a(n-9) for n>11
Some solutions for n=4
..0..0..1....1..1..1....0..0..0....0..0..1....0..0..1....0..0..0....1..0..0
..0..0..0....0..0..0....1..1..1....1..0..1....1..0..1....0..0..1....0..0..0
..1..0..1....1..1..1....0..0..0....1..0..1....1..0..1....0..0..1....1..1..0
..1..0..1....1..0..0....1..1..1....0..0..1....1..0..1....1..1..1....1..0..0
..0..0..1....1..1..1....1..0..1....1..1..1....0..1..1....1..1..0....1..1..1
Cf. A258554
allocated
nonn
R. H. Hardin, Jun 03 2015
approved
editing
allocated for R. H. Hardin
allocated
approved