login

Revision History for A258548

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of (n+1) X (2+1) 0..1 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
(history; published version)
#8 by Alois P. Heinz at Fri Dec 21 15:01:20 EST 2018
STATUS

reviewed

approved

#7 by Michel Marcus at Fri Dec 21 11:13:56 EST 2018
STATUS

proposed

reviewed

#6 by Colin Barker at Fri Dec 21 10:58:36 EST 2018
STATUS

editing

proposed

#5 by Colin Barker at Fri Dec 21 10:58:14 EST 2018
NAME

Number of (n+1) X (2+1) 0..1 arrays with every 2X2 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.

COMMENTS

Column 2 of A258554

FORMULA

Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 3*a(n-4) - 4*a(n-5) + 2*a(n-6) + 2*a(n-7) - 3*a(n-8) + a(n-9) for n>11.

Empirical g.f.: x*(44 - 64*x + 68*x^2 - 16*x^3 - 43*x^4 + 18*x^5 + 12*x^6 - 12*x^7 - 2*x^8 + 6*x^9 - x^10) / ((1 - x)^3*(1 - x - x^2 - x^4 + x^6)). - Colin Barker, Dec 21 2018

EXAMPLE

Some solutions for n=4:

CROSSREFS

Cf. A258554

Column 2 of A258554.

STATUS

approved

editing

#4 by R. H. Hardin at Wed Jun 03 09:09:49 EDT 2015
STATUS

editing

approved

#3 by R. H. Hardin at Wed Jun 03 09:09:40 EDT 2015
LINKS

R. H. Hardin, <a href="/A258548/b258548.txt">Table of n, a(n) for n = 1..210</a>

#2 by R. H. Hardin at Wed Jun 03 09:09:25 EDT 2015
NAME

allocated for R. H. Hardin

Number of (n+1)X(2+1) 0..1 arrays with every 2X2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically

DATA

44, 112, 296, 652, 1329, 2530, 4667, 8419, 14932, 26184, 45561, 78903, 136170, 234461, 403075, 692272, 1188185, 2038466, 3496239, 5995441, 10279967, 17625041, 30216773, 51802782, 88807568, 152244537, 260993810, 447421309, 767011467

OFFSET

1,1

COMMENTS

Column 2 of A258554

FORMULA

Empirical: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +3*a(n-4) -4*a(n-5) +2*a(n-6) +2*a(n-7) -3*a(n-8) +a(n-9) for n>11

EXAMPLE

Some solutions for n=4

..0..0..1....1..1..1....0..0..0....0..0..1....0..0..1....0..0..0....1..0..0

..0..0..0....0..0..0....1..1..1....1..0..1....1..0..1....0..0..1....0..0..0

..1..0..1....1..1..1....0..0..0....1..0..1....1..0..1....0..0..1....1..1..0

..1..0..1....1..0..0....1..1..1....0..0..1....1..0..1....1..1..1....1..0..0

..0..0..1....1..1..1....1..0..1....1..1..1....0..1..1....1..1..0....1..1..1

CROSSREFS

Cf. A258554

KEYWORD

allocated

nonn

AUTHOR

R. H. Hardin, Jun 03 2015

STATUS

approved

editing

#1 by R. H. Hardin at Wed Jun 03 09:04:10 EDT 2015
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved