login

Revision History for A253698

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock ne-sw antidiagonal difference unequal to its neighbors horizontally and nw+se diagonal sum unequal to its neighbors vertically
(history; published version)
#4 by R. H. Hardin at Fri Jan 09 08:50:22 EST 2015
STATUS

editing

approved

#3 by R. H. Hardin at Fri Jan 09 08:50:17 EST 2015
LINKS

R. H. Hardin, <a href="/A253698/b253698.txt">Table of n, a(n) for n = 1..1289</a>

#2 by R. H. Hardin at Fri Jan 09 08:49:55 EST 2015
NAME

allocated for R. H. Hardin

T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock ne-sw antidiagonal difference unequal to its neighbors horizontally and nw+se diagonal sum unequal to its neighbors vertically

DATA

16, 40, 40, 104, 76, 104, 264, 150, 146, 264, 680, 282, 234, 304, 680, 1736, 540, 356, 480, 602, 1736, 4456, 1026, 618, 700, 878, 1182, 4456, 11400, 1984, 968, 992, 1120, 1472, 2416, 11400, 29224, 3782, 1608, 1262, 1632, 1638, 2982, 4772, 29224, 74824

OFFSET

1,1

COMMENTS

Table starts

....16....40...104...264...680..1736..4456.11400.29224.74824.191720.491016

....40....76...150...282...540..1026..1984..3782..7270.13880..26644..51026

...104...146...234...356...618...968..1608..2558..4278..6854..11266..18192

...264...304...480...700...992..1262..1790..2538..4020..5990...8836..12394

...680...602...878..1120..1632..1914..2626..3598..5568..7834..11444..15184

..1736..1182..1472..1638..2386..3042..4010..5178..6934..8938..12212..16174

..4456..2416..2982..3136..4180..5030..6558..8846.12620.17170..22264..27490

.11400..4772..5282..4782..6552..7800.10428.14710.20260.27658..35292..45002

.29224..9652..9880..7926.10696.12646.16796.22964.30864.42644..55562..75580

.74824.19152.18552.14462.18236.20932.26124.36540.51630.74332..93964.121868

FORMULA

Empirical for column k:

k=1: a(n) = a(n-1) +4*a(n-2)

k=2: [order 16]

k=3: [order 19] for n>21

k=4: [order 22] for n>24

k=5: [order 26] for n>31

k=6: [order 28] for n>33

k=7: [order 32] for n>38

Empirical for row n:

n=1: a(n) = a(n-1) +4*a(n-2)

n=2: [order 16]

n=3: [order 19] for n>21

n=4: [order 19] for n>26

n=5: [order 27] for n>34

n=6: [order 21] for n>31

n=7: [order 25] for n>37

EXAMPLE

Some solutions for n=4 k=4

..0..1..1..1..0....1..1..0..1..1....1..0..0..0..1....0..1..0..1..1

..1..0..1..1..0....0..1..0..1..1....0..1..0..0..0....0..0..0..1..0

..1..1..0..0..1....0..1..1..0..0....1..1..0..1..1....0..1..0..0..1

..0..0..1..0..1....1..0..0..1..0....1..1..1..0..1....0..0..1..1..1

..1..0..1..0..0....1..0..0..1..0....1..0..0..0..1....1..1..0..1..1

CROSSREFS

Column 1 and row 1 are A185761

KEYWORD

allocated

nonn,tabl

AUTHOR

R. H. Hardin, Jan 09 2015

STATUS

approved

editing

#1 by R. H. Hardin at Fri Jan 09 08:37:52 EST 2015
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved