login

Revision History for A252618

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of (3+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 3 5 6 or 8 and every 3X3 column and antidiagonal sum not equal to 0 3 5 6 or 8
(history; published version)
#4 by R. H. Hardin at Fri Dec 19 10:26:07 EST 2014
STATUS

editing

approved

#3 by R. H. Hardin at Fri Dec 19 10:26:03 EST 2014
LINKS

R. H. Hardin, <a href="/A252618/b252618.txt">Table of n, a(n) for n = 1..210</a>

#2 by R. H. Hardin at Fri Dec 19 10:25:49 EST 2014
NAME

allocated for R. H. Hardin

Number of (3+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 3 5 6 or 8 and every 3X3 column and antidiagonal sum not equal to 0 3 5 6 or 8

DATA

1042, 2817, 7031, 17762, 58239, 156499, 437805, 1506801, 4136820, 11865455, 41976597, 116407007, 337378745, 1211267119, 3374947162, 9828010763, 35545348591, 99260624406, 289689365514, 1051432471689, 2939191705954

OFFSET

1,1

COMMENTS

Row 3 of A252615

FORMULA

Empirical: a(n) = 64*a(n-3) -1475*a(n-6) +16806*a(n-9) -109891*a(n-12) +449148*a(n-15) -1217688*a(n-18) +2303890*a(n-21) -3171129*a(n-24) +3207942*a(n-27) -2291813*a(n-30) +1076912*a(n-33) -308227*a(n-36) +49142*a(n-39) -3776*a(n-42) +96*a(n-45) for n>48

EXAMPLE

Some solutions for n=4

..1..2..0..3..2..0....0..3..3..2..3..3....2..3..3..2..0..3....0..0..3..2..3..0

..0..3..2..3..0..2....0..2..3..3..2..0....2..1..2..2..1..2....0..2..3..3..2..3

..1..2..2..1..2..2....2..2..1..2..2..1....3..0..2..3..0..2....2..2..1..2..2..1

..0..2..3..3..2..3....2..0..3..2..3..0....2..0..3..2..0..3....2..3..3..2..3..0

..0..3..2..3..3..2....3..2..3..3..2..3....2..1..2..2..2..2....3..2..3..3..2..3

KEYWORD

allocated

nonn

AUTHOR

R. H. Hardin, Dec 19 2014

STATUS

approved

editing

#1 by R. H. Hardin at Fri Dec 19 10:16:15 EST 2014
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved