login

Revision History for A250877

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)+x(i-1,j) in the j direction
(history; published version)
#4 by R. H. Hardin at Fri Nov 28 10:47:21 EST 2014
STATUS

editing

approved

#3 by R. H. Hardin at Fri Nov 28 10:46:48 EST 2014
LINKS

R. H. Hardin, <a href="/A250877/b250877.txt">Table of n, a(n) for n = 1..160</a>

#2 by R. H. Hardin at Fri Nov 28 10:46:28 EST 2014
NAME

allocated for R. H. Hardin

T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)+x(i-1,j) in the j direction

DATA

90, 288, 440, 678, 1456, 2002, 1328, 3442, 6812, 8736, 2306, 6728, 16262, 30360, 37130, 3680, 11644, 31928, 73122, 131068, 155080, 5518, 18520, 55386, 144248, 317878, 553736, 640002, 7888, 27686, 88212, 250964, 629528, 1350002, 2304492

OFFSET

1,1

COMMENTS

Table starts

.......90.......288.......678......1328.......2306.......3680.......5518

......440......1456......3442......6728......11644......18520......27686

.....2002......6812.....16262.....31928......55386......88212.....131982

.....8736.....30360.....73122....144248.....250964.....400496.....600070

....37130....131068....317878....629528....1097986....1755220....2633198

...155080....553736...1350002...2681528....4685964....7500960...11264166

...640002...2304492...5640102..11227928...19649066...31484612...47315662

..2619056...9488920..23289922..46440248...81358084..130461616..196169030

.10653370..38773148..95366678.190392728..333810066..535577460..805653678

.43144920.157554216.388124562.775558328.1360557884.2183825600.3286063846

FORMULA

Empirical: T(n,k) = (((62/3)*k^3+52*k^2+(130/3)*k+12)*4^n -((45/2)*k^3+(81/2)*k^2+18*k)*3^n +(9*k^3-9*k)*2^n +((5/6)*k^3-(5/2)*k^2+(8/3)*k))/3

Empirical for column k:

k=1: a(n) = 8*a(n-1) -19*a(n-2) +12*a(n-3); a(n) = (128*4^n-81*3^n+1)/3

k=2: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (472*4^n-378*3^n+54*2^n+2)/3

k=3: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (1168*4^n-1026*3^n+216*2^n+8)/3

k=4: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (2340*4^n-2160*3^n+540*2^n+24)/3

k=5: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (4112*4^n-3915*3^n+1080*2^n+55)/3

k=6: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (6608*4^n-6426*3^n+1890*2^n+106)/3

k=7: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (9952*4^n-9828*3^n+3024*2^n+182)/3

Empirical for row n:

n=1: a(n) = (34/3)*n^3 + 28*n^2 + (104/3)*n + 16

n=2: a(n) = 55*n^3 + 155*n^2 + 166*n + 64

n=3: a(n) = (788/3)*n^3 + 744*n^2 + (2218/3)*n + 256

n=4: a(n) = (3613/3)*n^3 + 3343*n^2 + (9494/3)*n + 1024

n=5: a(n) = 5328*n^3 + 14468*n^2 + 13238*n + 4096

n=6: a(n) = (68825/3)*n^3 + 61155*n^2 + (163798/3)*n + 16384

n=7: a(n) = (290548/3)*n^3 + 254464*n^2 + (669458/3)*n + 65536

EXAMPLE

Some solutions for n=4 k=4

..0..0..0..0..1....0..0..0..1..1....0..0..0..0..0....1..1..1..1..1

..2..2..2..2..3....2..2..2..3..3....2..2..3..3..3....0..0..0..0..0

..2..2..2..2..3....1..1..2..3..3....1..1..2..3..3....2..2..2..2..2

..0..1..1..1..2....0..0..1..2..2....1..1..2..3..3....0..2..2..2..2

..0..1..1..1..3....0..0..2..3..3....0..0..1..3..3....0..2..2..3..3

KEYWORD

allocated

nonn,tabl

AUTHOR

R. H. Hardin, Nov 28 2014

STATUS

approved

editing

#1 by R. H. Hardin at Fri Nov 28 10:35:52 EST 2014
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved