editing
approved
editing
approved
R. H. Hardin, <a href="/A250877/b250877.txt">Table of n, a(n) for n = 1..160</a>
allocated for R. H. Hardin
T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)+x(i-1,j) in the j direction
90, 288, 440, 678, 1456, 2002, 1328, 3442, 6812, 8736, 2306, 6728, 16262, 30360, 37130, 3680, 11644, 31928, 73122, 131068, 155080, 5518, 18520, 55386, 144248, 317878, 553736, 640002, 7888, 27686, 88212, 250964, 629528, 1350002, 2304492
1,1
Table starts
.......90.......288.......678......1328.......2306.......3680.......5518
......440......1456......3442......6728......11644......18520......27686
.....2002......6812.....16262.....31928......55386......88212.....131982
.....8736.....30360.....73122....144248.....250964.....400496.....600070
....37130....131068....317878....629528....1097986....1755220....2633198
...155080....553736...1350002...2681528....4685964....7500960...11264166
...640002...2304492...5640102..11227928...19649066...31484612...47315662
..2619056...9488920..23289922..46440248...81358084..130461616..196169030
.10653370..38773148..95366678.190392728..333810066..535577460..805653678
.43144920.157554216.388124562.775558328.1360557884.2183825600.3286063846
Empirical: T(n,k) = (((62/3)*k^3+52*k^2+(130/3)*k+12)*4^n -((45/2)*k^3+(81/2)*k^2+18*k)*3^n +(9*k^3-9*k)*2^n +((5/6)*k^3-(5/2)*k^2+(8/3)*k))/3
Empirical for column k:
k=1: a(n) = 8*a(n-1) -19*a(n-2) +12*a(n-3); a(n) = (128*4^n-81*3^n+1)/3
k=2: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (472*4^n-378*3^n+54*2^n+2)/3
k=3: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (1168*4^n-1026*3^n+216*2^n+8)/3
k=4: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (2340*4^n-2160*3^n+540*2^n+24)/3
k=5: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (4112*4^n-3915*3^n+1080*2^n+55)/3
k=6: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (6608*4^n-6426*3^n+1890*2^n+106)/3
k=7: a(n) = 10*a(n-1) -35*a(n-2) +50*a(n-3) -24*a(n-4); a(n) = (9952*4^n-9828*3^n+3024*2^n+182)/3
Empirical for row n:
n=1: a(n) = (34/3)*n^3 + 28*n^2 + (104/3)*n + 16
n=2: a(n) = 55*n^3 + 155*n^2 + 166*n + 64
n=3: a(n) = (788/3)*n^3 + 744*n^2 + (2218/3)*n + 256
n=4: a(n) = (3613/3)*n^3 + 3343*n^2 + (9494/3)*n + 1024
n=5: a(n) = 5328*n^3 + 14468*n^2 + 13238*n + 4096
n=6: a(n) = (68825/3)*n^3 + 61155*n^2 + (163798/3)*n + 16384
n=7: a(n) = (290548/3)*n^3 + 254464*n^2 + (669458/3)*n + 65536
Some solutions for n=4 k=4
..0..0..0..0..1....0..0..0..1..1....0..0..0..0..0....1..1..1..1..1
..2..2..2..2..3....2..2..2..3..3....2..2..3..3..3....0..0..0..0..0
..2..2..2..2..3....1..1..2..3..3....1..1..2..3..3....2..2..2..2..2
..0..1..1..1..2....0..0..1..2..2....1..1..2..3..3....0..2..2..2..2
..0..1..1..1..3....0..0..2..3..3....0..0..1..3..3....0..2..2..3..3
allocated
nonn,tabl
R. H. Hardin, Nov 28 2014
approved
editing
allocated for R. H. Hardin
allocated
approved