reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
f[p_, e_] := p^(4*Floor[e/4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
(PARI) a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(4*(f[i, 2]\4))); } \\ Amiram Eldar, Sep 01 2024
approved
editing
editing
approved
Greatest 4-th 4th power integer that divides n!
approved
editing
proposed
approved
editing
proposed
allocated for Clark KimberlingGreatest 4-th power integer that divides n!
1, 1, 1, 1, 1, 16, 16, 16, 1296, 20736, 20736, 20736, 20736, 20736, 20736, 331776, 331776, 429981696, 429981696, 268738560000, 268738560000, 268738560000, 268738560000, 4299816960000, 4299816960000, 4299816960000, 348285173760000, 13379723235164160000
1,6
Every term divides all its successors.
Clark Kimberling, <a href="/A248764/b248764.txt">Table of n, a(n) for n = 1..1000</a>
a(n) = n!/A248766(n).
a(6) = 16 because 16 divides 6! and if k > 2 then k^4 does not divide 6!.
z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
m = 4; Table[p[m, n], {n, 1, z}] (* A248764 *)
Table[p[m, n]^(1/m), {n, 1, z}] (* A248765 *)
Table[n!/p[m, n], {n, 1, z}] (* A248766 *)
allocated
nonn,easy
Clark Kimberling, Oct 14 2014
approved
editing
allocated for Clark Kimberling
allocated
approved