editing
approved
editing
approved
LinearRecurrence[{0, 0, 0, 11}, {1, 2, 5, 10}, 40] (* Harvey P. Dale, Aug 04 2021 *)
approved
editing
proposed
approved
editing
proposed
For example, n=31=2^0+2^1+2^2+2^3+2^4, then a(31+1)=a(2)*a(3)*a(5)*a(9)*a
n=31=2^0+2^1+2^2+2^3+2^4, then a(31+1)=a(2)*a(3)*a(5)*a(9)*a(17) i.e. 194871710=2*5*11*121*14641.
proposed
editing
editing
proposed
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,11).
a(n) = 11*a(n-4).
a(n) = 11*a(n-4). G.f.: -x*(1 + 2*x+)*(1)*( + 5*x^2+)/(1)/( - 11*x^4-1).
a(n) appears to satisfy x*Prod_{n>=0} (1 + a(2^n+1)x^(2^n)) = Sum_{n>=1} a(n)*x^n.
Then a(n+1) = a(2^x+1)*a(2^y+1)*a(2^z+1)..., where n=2^x+2^y+2^z+... .
CoefficientList[Series[-x(2x+1)(5x^2+1)/(1-11x^4-1), {x, 0, 20}], x] (* Benedict W. J. Irwin, Jul 24 2016 *)
proposed
editing
editing
proposed
From Benedict W. J. Irwin, Jul 29 2016: (Start)
a(n) = 11*a(n-4). G.f.: -x*(2*x+1)*(5*x^2+1)/(11*x^4-1). _Benedict W. J. Irwin_, Jul 24 2016
a(n) appears to satisfy x*Prod_{n>=0} (1 + a(2^n+1)x^(2^n)) = Sum_{n>=1} a(n)x^n.
Then a(n+1)=a(2^x+1)a(2^y+1)a(2^z+1)..., where n=2^x+2^y+2^z+... .
For example,
n=31=2^0+2^1+2^2+2^3+2^4, then a(31+1)=a(2)*a(3)*a(5)*a(9)*a(17) i.e. 194871710=2*5*11*121*14641.
(End)
a(n) = 11*a(n-4). G.f.: -x*(2*x+1)*(5*x^2+1)/(11*x^4-1). Benedict W. J. Irwin, Jul 24 2016
CoefficientList[Series[-x(2x+1)(5x^2+1)/(11x^4-1), {x, 0, 20}], x] (* Benedict W. J. Irwin, Jul 24 2016 *)
approved
editing