proposed
approved
proposed
approved
editing
proposed
If n is in A033845, a(n) = 2^(n/2); otherwise a(n) = gpf(n)^(n/gpf(n)). - Franklin T. Adams-Watters, Jun 15 2014
proposed
editing
editing
proposed
Minimum among the numbers p^(n/p), where p is any a prime divisor factor of n.
The setting a(1)=1 is conventional.
a(1)=1 is conventional. Upper bound (for any n): a(n) <= (3^(1/3))^n = A002581^n.
For prime p, a(p)=p.
For n>1: When gpf(n)>3 then a(n)=gpf(n)^(n/gpf(n)); otherwise if n is even then a(n)=2^(n/2); otherwise a(n)=3^(n/3).
p = factor(n); m = 2^n;
for(k=1, #p[, 1], q=p[k, 1]; q=q^(n\qp[k, 1]); if(q<m, m=q));
allocated for Stanislav SykoraMinimum among the numbers p^(n/p), where p is any prime divisor of n.
1, 2, 3, 4, 5, 8, 7, 16, 27, 25, 11, 64, 13, 49, 125, 256, 17, 512, 19, 625, 343, 121, 23, 4096, 3125, 169, 19683, 2401, 29, 15625, 31, 65536, 1331, 289, 16807, 262144, 37, 361, 2197, 390625, 41, 117649, 43, 14641, 1953125, 529, 47, 16777216, 823543, 9765625, 4913, 28561, 53
1,2
a(1)=1 is conventional. Upper bound: a(n) <= (3^(1/3))^n = A002581^n.
Stanislav Sykora, <a href="/A243405/b243405.txt">Table of n, a(n) for n = 1..2000</a>
a(12)=64 because 2^(12/2)=64 is smaller than 3^(12/3)=81.
(PARI) A243405(n)= {my(m, k, p, q); if(n==1, return(1));
p = factor(n); m = 2^n;
for(k=1, #p[, 1], q=p[k, 1]; q=q^(n\q); if(q<m, m=q));
return (m); }
allocated
nonn
Stanislav Sykora, Jun 04 2014
approved
editing
allocating
allocated
allocated for Stanislav Sykora
allocating
approved