editing
approved
editing
approved
<a href="/index/Rec#order_31">Index entries for linear recurrences with constant coefficients</a>, signature (7, 12, 34, 59, 109, 166, 258, 352, 483, 606, 754, 875, 1007, 1087, 1161, 1172, 1167, 1099, 1023, 895, 775, 628, 503, 371, 273, 179, 118, 66, 38, 15, 8).
approved
editing
editing
approved
nonn,easy
approved
editing
editing
approved
Column k=9 of A242464.
G.f.: -(x+1) *(x^4-x^3+x^2-x+1) *(x^4+x^3+x^2+x+1) *(x^2+x+1) *(x^6+x^3+1) *(x^2+1)*(x^4+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2-x+1) / (8*x^31 +15*x^30 +38*x^29 +66*x^28 +118*x^27 +179*x^26 +273*x^25 +371*x^24 +503*x^23 +628*x^22 +775*x^21 +895*x^20 +1023*x^19 +1099*x^18 +1167*x^17 +1172*x^16 +1161*x^15 +1087*x^14 +1007*x^13 +875*x^12 +754*x^11 +606*x^10 +483*x^9 +352*x^8 +258*x^7 +166*x^6 +109*x^5 +59*x^4 +34*x^3 +12*x^2 +7*x-1).
b:= proc(n, k, c, t) option remember;
`if`(n=0, 1, add(`if`(c=t and j=c, 0,
b(n-1, k, j, 1+`if`(j=c, t, 0))), j=1..k))
end:
a:= n-> b(n, 9, 0$2):
seq(a(n), n=0..30);
Geoffrey Critzer and Alois P. Heinz, <a href="/A242632/b242632.txt">Table of n, a(n) for n = 0..1000</a>
_Geoffrey Critzer_ and _Alois P. Heinz_, May 19 2014
Alois P. Heinz, <a href="/A242632/b242632.txt">Table of n, a(n) for n = 0..1000</a>
allocated for Alois P. Heinz
Number of n-length words w over a 9-ary alphabet {a_1,...,a_9} such that w contains never more than j consecutive letters a_j (for 1<=j<=9).
1, 9, 80, 711, 6318, 56143, 498896, 4433274, 39394819, 350068993, 3110771999, 27642843622, 245638961566, 2182789161071, 19396631915857, 172361736254288, 1531635402139359, 13610370004776711, 120944038906506659, 1074729088326395697, 9550223588843166996
0,2
allocated
nonn
Alois P. Heinz, May 19 2014
approved
editing