login

Revision History for A240560

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = 2^n*E(n,1/2) + 2^(n+1)*E(n+1,0), where E(n,x) the Euler polynomials.
(history; published version)
#10 by Bruno Berselli at Mon Jul 08 11:33:27 EDT 2019
STATUS

proposed

approved

#9 by Jean-François Alcover at Mon Jul 08 11:33:05 EDT 2019
STATUS

editing

proposed

#8 by Jean-François Alcover at Mon Jul 08 11:31:10 EDT 2019
MATHEMATICA

skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*If[n==k, 1, x^(n-k)], {k, 0, n}];

a[n_] := skp[n, 0] + skp[n+1, -1];

Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 08 2019 *)

STATUS

approved

editing

#7 by Bruno Berselli at Mon Apr 28 04:02:51 EDT 2014
STATUS

proposed

approved

#6 by Peter Luschny at Wed Apr 23 16:52:31 EDT 2014
STATUS

editing

proposed

#5 by Peter Luschny at Sat Apr 19 07:35:37 EDT 2014
NAME

a(n) = A1220452^n*E(n,1/2) + 2^(n+1) - A155585*E(n+1,0), where E(n,x) the Euler polynomials.

DATA

0, 0, 1, 0, -11, 0, 211, 0, -6551, 0, 303271, 0, -19665491, 0, 1704396331, 0, -190473830831, 0, 26684005437391, 0, -4581126864886571, 0, 946075012113714451, 0, -231406946026650896711, 0, 66164529094650835995511, 0, -21866924546405967976005251, 0

FORMULA

a(n) = A122045(n) - A155585(n+1).

MAPLE

A240560 := n -> euler(n) + 2^(n+1)*euler(n+1, 0):

seq(A240560(n), n=0..28);

CROSSREFS
#4 by Peter Luschny at Thu Apr 17 16:50:45 EDT 2014
NAME

nn

a(n) = A122045(n) - A155585(n+1).

FORMULA

a(n) = A122045(n) - A155585(n+1).

#3 by Peter Luschny at Thu Apr 17 16:43:04 EDT 2014
DATA

0, 0, 1, 0, -11, 0, 211, 0, -6551, 0, 303271, 0, -19665491, 0, 1704396331, 0, -190473830831, 0, 26684005437391, 0, -4581126864886571, 0, 946075012113714451, 0, -231406946026650896711, 0, 66164529094650835995511, 0, -21866924546405967976005251, 0

FORMULA

a(n) = A122045(n) - A155585(n+1).

a(n) = skp(n, 0) + skp(n+1, -1), where skp(n, x) are the Swiss-Knife polynomials A153641.

Discussion
Thu Apr 17
16:50
Peter Luschny: I suggest that the alternate zeros are not omitted here because of the definition a(n) = A122045(n)-155585(n+1).
#2 by Peter Luschny at Thu Apr 17 16:24:59 EDT 2014
NAME

allocated for Peter Luschny

nn

DATA

0, 0, 1, 0, -11, 0, 211

OFFSET

0,5

KEYWORD

allocated

sign

AUTHOR

Peter Luschny, Apr 17 2014

STATUS

approved

editing

#1 by Peter Luschny at Mon Apr 07 17:36:45 EDT 2014
NAME

allocated for Peter Luschny

KEYWORD

allocated

STATUS

approved