proposed
approved
proposed
approved
editing
proposed
(PARI) f(n) = if( n<1, 0, sum(a1=1, n, sum(a2=1, n, sum(a3=1, n, vecmax([a1, a2, a3]) == n && vecsum( factor( Pol([1, a1, a2, a3]))[, 2]) == 3)))); \\ A238097
a(n) = sum(k=1, n, (n\k)*f(k));
lista(nn) = my(v = vector(nn, k, f(k))); vector(nn, i, sum(k=1, i, (i\k)*v[k])); \\ Michel Marcus, Sep 28 2023
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 19, 21, 23, 25, 27, 30, 34, 36, 39, 44, 46, 49, 54, 57, 60, 64, 67, 72, 76, 79, 85, 91, 92, 95, 100, 106, 109, 115, 117, 122, 129, 132, 136, 147, 150, 154, 159, 163, 166, 174, 180, 187, 191, 194, 199, 210, 211, 216
reviewed
editing
proposed
reviewed
editing
proposed
D. Andrica and E. J. Ionascu, On the number of polynomials with coefficients in [n], An. St. Univ. Ovidius Constanta, 2013, to appear.
Dorin Andrica and Eugen J. Ionascu, <a href="http://www.emis.de/journals/ASUO/mathematics_/vol22-1/Andrica_D__Ionascu_E.J._nou-1__final_.pdf">On the number of polynomials with coefficients in [n]</a>, An. St. Univ. Ovidius Constanta, Vol. 22(1),2014, 13-23.
approved
editing