login

Revision History for A226353

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Largest integer k in base n whose squared digits sum to sqrt(k).
(history; published version)
#10 by N. J. A. Sloane at Sat Jun 08 15:34:35 EDT 2013
STATUS

proposed

approved

#9 by Christian N. K. Anderson at Sat Jun 08 15:08:04 EDT 2013
STATUS

editing

proposed

#8 by Christian N. K. Anderson at Sat Jun 08 15:05:56 EDT 2013
COMMENTS

Any d-digit number in base n meeting the criterion must also meet the condition d*(n-1)^2 < n^(d/2). Numerically, it can be shown this limits the candidate values to squares < 22n22*n^4. The larger values are statistically unlikely, and in fact the largest value of k in the first 1000 bases is ~9.96*n^4 in base 775.

LINKS

Christian N. K. Anderson, <a href="/A226353/a226353.txt">Table of base, all solutions in base 10, and all solutions in base n, </a> for bases 2 to 1000.</a>

EXAMPLE

sqrt(1) = 1 = 1^2

sqrt(16) = 4 = 2^2+0^2

sqrt(256) = 16 = 4^2+0^2+0^2

sqrt(2601)= 51 = 5^2+0^2+5^2+1^2

PROG

(R) inbase=function(n, b) { x=c(); while(n>=b) { x=c(n%%b, x); n=floor(n/b) }; c(n, x) }

#7 by Christian N. K. Anderson at Wed Jun 05 05:24:47 EDT 2013
COMMENTS

a(n)=1 iff A226352(n)=1.

EXAMPLE

In base 8, the four solutions are the values {1,16,256,2601}, which are written as {1,20,400,5051} in base 8 andsqrt(1)=1=1^2and

sqrt(1)=1=1^2

CROSSREFS

Cf. A226352, A226224.

Cf. A226353, A226224.

Cf. digital root of n: A010888.

#6 by Kevin L. Schwartz at Tue Jun 04 14:02:47 EDT 2013
CROSSREFS

Cf. A226353, A226224.

Cf. digital sums for digits at various powers: A007953, A003132, A055012, A055013, A055014, A055015.

#5 by Kevin L. Schwartz at Tue Jun 04 13:59:16 EDT 2013
CROSSREFS

Cf. A226224.

Cf. digital sums for digits at various powers: A007953, A003132,A055012,A055013, A055014, A055015.

Cf. digital root of n: A010888.

#4 by Kevin L. Schwartz at Tue Jun 04 13:57:15 EDT 2013
LINKS

Christian N. K. Anderson, <a href="/A226353/a226353.txt">Table of base, all solutions in base 10, and all solutions in base n, for bases 2 to 1000.</a>

#3 by Kevin L. Schwartz at Tue Jun 04 13:56:15 EDT 2013
LINKS

Christian N. K. Anderson, <a href="/A226353/b226353.txt">Table of n, a(n) for n = 2..1000</a>

#2 by Kevin L. Schwartz at Tue Jun 04 13:52:44 EDT 2013
NAME

allocated for Kevin L. Schwartz

Largest integer k in base n whose squared digits sum to sqrt(k).

DATA

1, 49, 169, 36, 1, 1, 2601, 1089, 1, 8836, 33489, 44100, 1, 149769, 128164, 96721, 1, 156816, 1225, 40804, 12321, 831744, 839056, 1149184, 1737124, 3655744, 407044, 1890625, 2208196, 1089, 1, 1466521, 6125625, 2235025, 2832489, 1, 3759721, 6885376, 8844676

OFFSET

2,2

COMMENTS

Any d-digit number in base n meeting the criterion must also meet the condition d*(n-1)^2 < n^(d/2). Numerically, it can be shown this limits the candidate values to squares < 22n^4. The larger values are statistically unlikely, and in fact the largest value of k in the first 1000 bases is ~9.96*n^4 in base 775.

EXAMPLE

In base 8, the four solutions are the values {1,16,256,2601}, which are written as {1,20,400,5051} in base 8 andsqrt(1)=1=1^2

sqrt(16)=4=2^2+0^2

sqrt(256)=16=4^2+0^2+0^2

sqrt(2601)=51=5^2+0^2+5^2+1^2

PROG

(R)inbase=function(n, b) { x=c(); while(n>=b) { x=c(n%%b, x); n=floor(n/b) }; c(n, x) }

for(n in 2:50) cat("Base", n, ":", which(sapply((1:(4.7*n^2))^2, function(x) sum(inbase(x, n)^2)==sqrt(x)))^2, "\n")

CROSSREFS

Cf. A226352.

KEYWORD

allocated

nonn,base

STATUS

approved

editing

#1 by Kevin L. Schwartz at Tue Jun 04 13:52:44 EDT 2013
NAME

allocated for Kevin L. Schwartz

KEYWORD

allocated

STATUS

approved