proposed
approved
proposed
approved
editing
proposed
Any d-digit number in base n meeting the criterion must also meet the condition d*(n-1)^2 < n^(d/2). Numerically, it can be shown this limits the candidate values to squares < 22n22*n^4. The larger values are statistically unlikely, and in fact the largest value of k in the first 1000 bases is ~9.96*n^4 in base 775.
Christian N. K. Anderson, <a href="/A226353/a226353.txt">Table of base, all solutions in base 10, and all solutions in base n, </a> for bases 2 to 1000.</a>
sqrt(1) = 1 = 1^2
sqrt(16) = 4 = 2^2+0^2
sqrt(256) = 16 = 4^2+0^2+0^2
sqrt(2601)= 51 = 5^2+0^2+5^2+1^2
(R) inbase=function(n, b) { x=c(); while(n>=b) { x=c(n%%b, x); n=floor(n/b) }; c(n, x) }
Christian N. K. Anderson, <a href="/A226353/a226353.txt">Table of base, all solutions in base 10, and all solutions in base n, for bases 2 to 1000.</a>
Christian N. K. Anderson, <a href="/A226353/b226353.txt">Table of n, a(n) for n = 2..1000</a>
allocated for Kevin L. Schwartz
Largest integer k in base n whose squared digits sum to sqrt(k).
1, 49, 169, 36, 1, 1, 2601, 1089, 1, 8836, 33489, 44100, 1, 149769, 128164, 96721, 1, 156816, 1225, 40804, 12321, 831744, 839056, 1149184, 1737124, 3655744, 407044, 1890625, 2208196, 1089, 1, 1466521, 6125625, 2235025, 2832489, 1, 3759721, 6885376, 8844676
2,2
Any d-digit number in base n meeting the criterion must also meet the condition d*(n-1)^2 < n^(d/2). Numerically, it can be shown this limits the candidate values to squares < 22n^4. The larger values are statistically unlikely, and in fact the largest value of k in the first 1000 bases is ~9.96*n^4 in base 775.
In base 8, the four solutions are the values {1,16,256,2601}, which are written as {1,20,400,5051} in base 8 andsqrt(1)=1=1^2
sqrt(16)=4=2^2+0^2
sqrt(256)=16=4^2+0^2+0^2
sqrt(2601)=51=5^2+0^2+5^2+1^2
(R)inbase=function(n, b) { x=c(); while(n>=b) { x=c(n%%b, x); n=floor(n/b) }; c(n, x) }
for(n in 2:50) cat("Base", n, ":", which(sapply((1:(4.7*n^2))^2, function(x) sum(inbase(x, n)^2)==sqrt(x)))^2, "\n")
Cf. A226352.
allocated
nonn,base
Christian N. K. Anderson and Kevin L. Schwartz, Jun 04 2013
approved
editing
allocated for Kevin L. Schwartz
allocated
approved