editing
approved
editing
approved
Vaclav Kotesovec, <a href="/A226106/a226106.jpg">Graph - The asymptotic ratio</a>
approved
editing
editing
approved
nmax = 40; CoefficientList[Series[Exp[Sum[Sum[k*EulerPhi[k] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
approved
editing
editing
approved
Vaclav Kotesovec, <a href="/A226106/b226106.txt">Table of n, a(n) for n = 0..10000</a>
nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^EulerPhi[k^2], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
a(n) ~ exp(2^(9/4) * sqrt(Pi) * n^(3/4) / (3 * 5^(1/4)) + 3*Zeta(3) / Pi^2) / (2^(11/8) * 5^(1/8) * Pi^(1/4) * n^(5/8)). - Vaclav Kotesovec, Mar 30 2018
nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^(k*EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 30 2018 *)
Here phi(n) = A000010(n) is the Euler totient function.
Euler transform of A002618. - Vaclav Kotesovec, Mar 30 2018
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 20*x^4 + 52*x^5 + 105*x^6 + 253*x^7 +...
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, eulerphi(d^3))*x^m/m)+x*O(x^n)), n)}
approved
editing