login

Revision History for A225958

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
O.g.f.: exp( Sum_{n>=1} (sigma(2*n^3) - sigma(n^3)) * x^n/n ).
(history; published version)
#7 by Paul D. Hanna at Wed Jul 24 19:50:11 EDT 2013
STATUS

editing

approved

#6 by Paul D. Hanna at Wed Jul 24 19:50:06 EDT 2013
CROSSREFS
STATUS

approved

editing

#5 by Paul D. Hanna at Wed May 22 00:11:35 EDT 2013
STATUS

editing

approved

#4 by Paul D. Hanna at Wed May 22 00:11:33 EDT 2013
NAME

O.g.f.: exp( Sum_{n>=1} (sigma(2*n^3) - sigma(n^3)) * x^n/n ).

COMMENTS

Compare to the Jacobi theta_3 function:

FORMULA

O.g.f.: exp( Sum_{n>=1} A054785(n^3)*x^n/n ).

EXAMPLE

O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 44*x^3 + 134*x^4 + 468*x^5 + 1524*x^6 +...

log(A(x)) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 + 114*x^7/7 + 128*x^8/8 + 242*x^9/9 + 248*x^10/10 + 266*x^11/11 - 416*x^12/12 +...+ A054785(n^3)*x^n/n +...

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m^3)-sigma(m^3))*x^m/m)+x^2*O(x^n)), n)}

CROSSREFS
STATUS

approved

editing

#3 by Paul D. Hanna at Wed May 22 00:00:26 EDT 2013
STATUS

editing

approved

#2 by Paul D. Hanna at Wed May 22 00:00:23 EDT 2013
NAME

allocated for Paul D. Hanna

O.g.f.: exp( Sum_{n>=1} (sigma(2*n^3) - sigma(n^3)) * x^n/n ).

DATA

1, 2, 10, 44, 134, 468, 1524, 4584, 13862, 40566, 114880, 321052, 879092, 2360156, 6248864, 16297384, 41902454, 106437600, 267149022, 662979572, 1628437160, 3960377672, 9541519732, 22786066280, 53958062564, 126750346970, 295476011176, 683776368416, 1571299804688

OFFSET

0,2

COMMENTS

Compare to the Jacobi theta_3 function:

1 + 2*Sum_{n>=1} x^(n^2) = exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n ).

Here sigma(n) = A000203(n), the sum of the divisors of n.

FORMULA

O.g.f.: exp( Sum_{n>=1} A054785(n^3)*x^n/n ).

Logarithmic derivative equals A225959.

EXAMPLE

O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 44*x^3 + 134*x^4 + 468*x^5 + 1524*x^6 +...

where

log(A(x)) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 + 114*x^7/7 + 128*x^8/8 + 242*x^9/9 + 248*x^10/10 + 266*x^11/11 - 416*x^12/12 +...+ A054785(n^3)*x^n/n +...

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m^3)-sigma(m^3))*x^m/m)+x^2*O(x^n)), n)}

for(n=0, 50, print1(a(n), ", "))

CROSSREFS
KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, May 21 2013

STATUS

approved

editing

#1 by Paul D. Hanna at Tue May 21 23:48:10 EDT 2013
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved