editing
approved
editing
approved
editing
approved
a(n) = 2*A111932(n) - sigma(n), where sigma(n) is the sum of divisors of n.
approved
editing
editing
approved
Compare to: -log( 1 + Sum_{n>=1} (-1)^n*(x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2)) ) = Sum_{n>=1} sigma(n)*x^n/n.
approved
editing
editing
approved
a(n) = 1 iff n = 2^k for k>=0.
approved
editing
editing
approved
L.g.f.: log( 1 + Sum_{n>=1} x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2) ) = Sum_{n>=1} a(n)*x^n/n.
Compare to: log( 1 + Sum_{n>=1} (-1)^n*(x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2)) ) = Sum_{n>=1} sigma(n)*x^n/n.
Paul D. Hanna, <a href="/A224976/b224976.txt">Table of n, a(n) for n = 1..10000</a>
L.g.f.: A(x) = x + x^2/2 - 2*x^3/3 + x^4/4 + 6*x^5/5 - 8*x^6/6 + 8*x^7/7 + x^8/8 - 11*x^9/9 + 6*x^10/10 + 12*x^11/11 - 20*x^12/12 +...
(PARI) {a(n)=n*polcoeff(log(1+sum(k=1, n, x^(k*(3*k-1)/2) + x^(k*(3*k+1)/2))+x*O(x^n)), n)}
Cf. A001318.